11 |
Utvärdering av styvhetsegenskaper hos ett nyutvecklat träbjälklag / Evaluation of stiffness properties of a novel wooden floor systemDover, Pär, Berggren, Peter, Fahlgren, John January 2006 (has links)
I samband med att intresset för att bygga högre trähus har ökat så krävs nya lösningar för att t.ex. kunna möta efterfrågan på stora öppna ytor och långa spännvidder. Träbjälklag med lång spännvidd har dock oftast svårigheter med att klara kraven på svikt och vibrationer. Ett nyutvecklat förslag på träbjälklag som förmodas klara dessa krav bättre än traditionella träbjälklag har varit utgångspunkten för detta examensarbete där syftet har varit att undersöka bjälklagets styvhet. Detta gjordes laborativt genom att bygga och testa en prototyp av det föreslagna bjälklaget och genom att en numerisk modell baserad på finita element metoden togs fram och användes för att studera hur olika parametrar påverkar bjälklagets styvhetsegenskaper. Bjälklagets design bygger på fackverksprincipen i primärriktningen och på balkverkan i sekundärriktningen. De ingående komponenterna har kommit prefabricerade till Växjö universitet där de har monterats ihop till ett fullskaligt bjälklagselement. Elementet har sedan utsatts för ett antal belastningsfall där nedböjningarna uppmätts vilka sedan givit underlag för att få värden på bjälklagets effektiva styvhetsegenskaper. Både de laborativa och de simulerade resultaten visar på en hög böjstyvhet i primärriktningen d.v.s. 18,9•106 Nm2/m [EI/b] respektive 18,6•106 Nm2/m [EI/b]. Även böjstyvheten i sekundärriktningen är hög d.v.s. motsvarar 21,2 % respektive 17,1 % av styvheten i primärriktningen. I beräkningsmodellen har det dessutom undersökts hur ett övre lager av spånskivor inverkar på bjälklagets styvhet. / The interest for building higher and larger wooden houses has increased in Sweden during the last decade resulting in higher requirements on the technical performance of such structures in order to met demands on large open surfaces and large spans of floors. Wooden floor systems with large spans often have difficulties, however, to meet the vibration requirements. A novel floor system, likely to handle the vibration requirements better than traditional wooden floor systems, is the basis for this master thesis. The purpose is to examine the stiffness of the floor by building and testing a prototype and by producing a numerical model based on the finite element method. In the longitudinal, main load-bearing direction the floor system works as a truss with flanges of longitudinal oriented timber members and web diagonals of transversely oriented members. In the transverse direction the web diagonals work as beams. The components were prefabricated elsewhere and assembled at Växjö University into a prototype. The prototype was then exposed to a number of different load cases. Deflections were measured and stiffness properties of the floor were derived. In addition to the experimental analysis the numerical model was used to calculate deflections when subjected to different load cases and for evaluating the principal stiffness properties of the floor. Both the experimental and the calculated results using the numerical model show high bending stiffness in the longitudinal direction, EI/b = 18,9•106 Nm2/m and 18,6•106 Nm2/m respectively. Also the bending stiffness in the transversal direction is high and equivalent to 21,2 % or 17,1 % (testing and simulation respectively) of the bending stiffness in the longitudinal direction. Using numerical analysis, also the effect on the stiffness of adding an upper layer of a 22 mm particleboard was examined.
|
12 |
Utvärdering av styvhetsegenskaper hos ett nyutvecklat träbjälklag av limmade sidobräder / Evaluation of stiffness properties of a novel wooden floor system of glued side boardsWadefur, Tommy, Karlsson, Viktor January 2007 (has links)
<p>Idag blir det allt vanligare med träbyggnader högre än två våningar. Detta tillsammans med en modern arkitektur som ger stora öppna planlösningar ställer höga krav på bjälklagen i träbyggnader. Problematiken med långa spännvidder för bjälklag i trä är att klara kraven för svikt och nedböjning. Dessa krav måste uppfyllas för att säkerställa funktioner hos andra byggdelar och för att människor inte ska uppleva att golvet sviktar eller vibrerar på ett obehagligt sätt.</p><p>Ett träbjälklag bestående av limmade balkar av sidobräder har utvecklats. Bjälklaget är utformat av balkar med I-tvärsnitt i primärriktningen och rektangulära balktvärsnitt i sekundärriktningen. Examensarbetet omfattar laborativa provningar och beräkningar dels för att bestämma en böjelasticitetsmodul för varje enskild limmad balk och dels för att bestämma styvhetsegenskaperna för bjälklaget.</p><p>De limmade träbalkarna ingår i ett forskningsprojekt vid Växjö universitet finansierat av KK-stiftelsen, som syftar till att undersöka möjligheterna att tillverka en konkurrenskraftig produkt genom att i grönt tillstånd (otorkat) limma ihop bräder från stockens yttre delar till balkar. Balkarna levererades limmade och hyvlade till universitet där en böjelasticitetsmodul först bestämdes för varje enskild balk. Därefter monterades balkarna ihop till ett fullskaligt bjälklag som provades med olika försöksuppställningar/lastfall varvid deformationen mättes upp. Dessa deformationer blir underlag för att bestämma bjälklagets styvhet.</p><p>Böjstyvheten i primärriktningen uppgår till 17,55 x 1012 Nmm2/m enligt beräkningar baserade på laborativa resultat. Böjstyvheten i sekundärriktningen uppgår till 4,5 % av primärriktningens böjstyvhet, dvs. 0,79 x 1012 Nmm2/m. Sammanfattningsvis kan man säga att böjstyvheten är hög i båda riktningar i jämförelse med vanliga träbjälklag.</p> / <p>In Sweden it becomes more and more common with wood buildings higher than two floors. This along with a modern architecture that gives big open plan solutions sets high requirements on the floor systems in wood buildings. The complexes of problems with long spans for floor systems in wood are to match the requirements for elasticity and deformation. These requirements must be met in order to ensure functions of other construction components, and not be unpleasant for people to walk on with respect to vibrations.</p><p>A wooden floor system consisting of green glued side wood sections has been developed. The floor system is made with I-profiled beams in the primary direction and rectangular cross-sections in the secondary direction. This diploma work is based on that through elaborative testing and numeric calculations to decide the stiffness properties for each individual green glued side wood section and for the floor system.</p><p>The glued side wood sections are included in a project at Växjö University, which is financed by the KK-foundation. The sections were delivered glued and planed to the university where the stiffness properties were first determinded for each individual section. Then, the sections were assembled to one fully sized floor system that was exposed to different experiments as the deformation was measured. These deformations were later used in order to decide the stiffness of the floor system.</p><p>The stiffness in the primary direction was prescribed to 17,55 x 1012 Nmm2/m after calculations using results from the tests. The stiffness in the secondary direction amounts to 4,5% of the primary directions stiffness, i e. 0,79 x 1012 Nmm2/m. To sum up, one can say that the stiffness is high in both directions compared to regular wooden floor systems.</p>
|
13 |
Utvärdering av styvhetsegenskaper hos ett nyutvecklat träbjälklag / Evaluation of stiffness properties of a novel wooden floor systemDover, Pär, Berggren, Peter, Fahlgren, John January 2006 (has links)
<p>I samband med att intresset för att bygga högre trähus har ökat så krävs nya lösningar för att t.ex. kunna möta efterfrågan på stora öppna ytor och långa spännvidder. Träbjälklag med lång spännvidd har dock oftast svårigheter med att klara kraven på svikt och vibrationer. Ett nyutvecklat förslag på träbjälklag som förmodas klara dessa krav bättre än traditionella träbjälklag har varit utgångspunkten för detta examensarbete där syftet har varit att undersöka bjälklagets styvhet. Detta gjordes laborativt genom att bygga och testa en prototyp av det föreslagna bjälklaget och genom att en numerisk modell baserad på finita element metoden togs fram och användes för att studera hur olika parametrar påverkar bjälklagets styvhetsegenskaper.</p><p>Bjälklagets design bygger på fackverksprincipen i primärriktningen och på balkverkan i sekundärriktningen. De ingående komponenterna har kommit prefabricerade till Växjö universitet där de har monterats ihop till ett fullskaligt bjälklagselement. Elementet har sedan utsatts för ett antal belastningsfall där nedböjningarna uppmätts vilka sedan givit underlag för att få värden på bjälklagets effektiva styvhetsegenskaper.</p><p>Både de laborativa och de simulerade resultaten visar på en hög böjstyvhet i primärriktningen d.v.s. 18,9•106 Nm2/m [EI/b] respektive 18,6•106 Nm2/m [EI/b]. Även böjstyvheten i sekundärriktningen är hög d.v.s. motsvarar 21,2 % respektive 17,1 % av styvheten i primärriktningen.</p><p>I beräkningsmodellen har det dessutom undersökts hur ett övre lager av spånskivor inverkar på bjälklagets styvhet.</p> / <p>The interest for building higher and larger wooden houses has increased in Sweden during the last decade resulting in higher requirements on the technical performance of such structures in order to met demands on large open surfaces and large spans of floors. Wooden floor systems with large spans often have difficulties, however, to meet the vibration requirements. A novel floor system, likely to handle the vibration requirements better than traditional wooden floor systems, is the basis for this master thesis. The purpose is to examine the stiffness of the floor by building and testing a prototype and by producing a numerical model based on the finite element method.</p><p>In the longitudinal, main load-bearing direction the floor system works as a truss with flanges of longitudinal oriented timber members and web diagonals of transversely oriented members. In the transverse direction the web diagonals work as beams. The components were prefabricated elsewhere and assembled at Växjö University into a prototype. The prototype was then exposed to a number of different load cases. Deflections were measured and stiffness properties of the floor were derived. In addition to the experimental analysis the numerical model was used to calculate deflections when subjected to different load cases and for evaluating the principal stiffness properties of the floor.</p><p>Both the experimental and the calculated results using the numerical model show high bending stiffness in the longitudinal direction, EI/b = 18,9•106 Nm2/m and 18,6•106 Nm2/m respectively. Also the bending stiffness in the transversal direction is high and equivalent to 21,2 % or 17,1 % (testing and simulation respectively) of the bending stiffness in the longitudinal direction. Using numerical analysis, also the effect on the stiffness of adding an upper layer of a 22 mm particleboard was examined.</p>
|
14 |
Vibration Serviceability Assessment of a Steel Modular Floor SystemMercado Celin, Maria Angelica 14 August 2023 (has links)
A new modular steel floor system, named FastFloor, is proposed for commercial buildings. The system is conceptualized to be prefabricated at the shop and ready to be installed on a previously erected skeleton frame structure consisting of girders and columns or connected to core shear walls. The system configuration aims to increase the speed of design, fabrication, and erection of a steel project by eliminating concrete pouring and curing times. Other advantages include reducing the weight of the building and its carbon footprint.
Several module configurations were considered and evaluated based on a series of interviews with experts in steel fabrication and erection engineering. The selection relied not only on addressing the issues related to fabrication, transportation, and erection but also on satisfying floor vibrations, as it was determined to be the governing limit state of the plate thickness, section sizes, and beam spacing due to the presence of an unstiffened bare plate acting as a slab. Observations were performed regarding fabrication sequence and transportation on the chosen configuration.
The dynamic properties of the module are particularly important because DG11 was developed for composite concrete-steel floor systems, and its applicability to all steel-floor systems needs to be evaluated. In parallel, a vibration testing program was conducted to determine the dynamic properties of the module, including natural frequencies and mode shapes. Lastly, the acceptability of the modular system for floor vibrations was evaluated by both a calculation method and a modeling approach. The analysis results suggest that the module will not satisfy floor vibrations criteria, but a modified module with added stiffeners is shown to be acceptable. Upcoming tests, by others, on specimens with a raised access floor will be necessary to refine the predictions and determine if the stiffeners are actually required. / Master of Science / FastFloor is an innovative modular all-steel floor system that aims to revolutionize the construction of commercial buildings, with benefits including enhanced efficiency in design, fabrication, and erection, as well as reduced environmental impact, by eliminating the need for concrete pouring and curing and full prefabrication in shops.
Several module configurations were evaluated based on insights from industry experts in steel fabrication and erection engineering. It was observed that the main challenge in the early phases was to address issues related to fabrication, transportation, and erection while ensuring optimal performance in terms of floor vibrations.
This thesis project focused on a preliminary assessment of the vibration behavior of the system by conducting dynamic tests and evaluating the compatibility with the analytical and computational procedures in Design Guide 11, which is not calibrated for an all-steel system like FastFloor.
Based on the results, it was concluded that the initial configuration did not fully satisfy the floor vibrations criteria. However, through further computational evaluation, a modified module, based on the initial configuration with added stiffeners, was predicted to be satisfactory. Thus, future research will continue to refine the system behavior and predictions and evaluate the contributions of Raised Access Floor to the vibration performance.
|
15 |
New composite flooring system for the circular economyLam, Dennis, Yang, Jie, Wang, Yong, Dai, Xianghe, Sheehan, Therese, Zhou, Kan 15 September 2021 (has links)
No / Circular economy is an economic system aimed at minimizing wastes and making the most of the current resources. This regenerative approach contrasts with the traditional linear economy, which has been adopted by the construction industry. Developing new construction technologies for sustainable built environment is a top priority for the construction industry throughout the world. Much of the environmental impact from the construction industry is associated with the consumption of resources and generation of waste. The construction industry in Europe consumes over 70,000 million tonnes of materials each year and generates over 250 million tonnes of waste. Composite flooring formed by connecting the concrete slabs to the supporting steel beams has been widely used for many years and is well established as one of the most efficient floor systems in multi storey steel frame building structures. However, shear connectors are welded through the steel decking to the steel beams and cast into the concrete; this made deconstruction and reuse of these components almost impossible. A new composite flooring system which allows for the reuse of the steel beams and composite floor slabs is developed and tested to assess its potential and suitability for reuse. This paper presents the results of a series of full scale beam tests and demonstrates the reusability of this new form of composite flooring systems. Simplified hand calculations are also provided and compared against beam tests / EPSRC, Structural Metal Deck Ltd.
|
Page generated in 0.0435 seconds