• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distribution, habitat, and social organization of the Florida scrub jay with a discussion of the evolution of cooperative breeding in new world jays /

Cox, Jeffrey A., January 1984 (has links)
Thesis (Ph. D.)--University of Florida, 1984. / Description based on print version record. Typescript. Vita. Includes bibliographical references (leaves 211-224).
2

The Scrub Jay in Arizona; behavior and interactions with other jays

Wescott, Peter Walter, 1938- January 1962 (has links)
No description available.
3

Beyond Age and Stage: Consequences of Individual Variation in Demographic Traits

Feichtinger, Erin Elizabeth 06 July 2017 (has links)
Within natural populations, individuals vary in their propensity to grow, survive and produce offspring. Additionally, fates of individuals are often correlated and non-independent as a result of shared genes, rearing environment or both. Variation in demographic traits can change population dynamics over time. The effects of variation in individual growth rate on population growth rate, net reproductive rate and generation time are examined, along with quantifying the sources of variation in survival of a long-lived cooperatively breeding bird, the Florida Scrub-Jay (Aphelocoma coerulescens). I built a 2 stage population model with two growth phenotypes, fast and slow, and simulated all parameter values using R 3.3.1. Variation in individual maturation rate changes population dynamics, especially in the presence of phenotypic correlation between parents and offspring in growth phenotype. I used Cox Proportional Hazard models with a covariance structure derived from a kinship matrix using the R packages survival and kinship2. Survival of juvenile Florida Scrub-Jays is strongly dependent on kinship, or the degree of relatedness between individuals, in addition to body mass, social structure of the natal territory, natal territory quality and environmental conditions of the rearing period. Breeder Florida Scrub-Jay survival is mainly structured by group size, kinship, yearly variation in environmental conditions and territory quality.
4

Effect of predation risk and food availability on parental care and nest survival in suburban and wildland Florida Scrub-Jays

Niederhauser, Joseph M. 01 January 2012 (has links)
Individual organisms often use cues from their natural environments to determine many behavioral and life-history "decisions." These "decisions" are usually adaptive, i.e. a response to selection, because the environmental cues on which they are based reliably correlate with increased fitness over time. When the selected behavioral response to a natural cue no longer provides a fitness benefit, then selection for a new response may occur but individuals maintaining the previously selected response may suffer reduced survival and reproduction. Especially in human-modified landscapes individuals making a maladaptive behavioral or life-history choice based on those formerly reliable environmental cues may be faced with an "evolutionary trap". In urban, or suburban, environments many factors have been altered in ways that could lead to evolutionary traps. Inappropriate behavioral responses by many individuals could lead to reduced demographic performance of urban populations relative to their wildland counterparts and to the decline of entire urban populations. In birds, maladaptive patterns of nest provisioning or vigilance may occur (a) when human-provided adult foods are easier to feed young because they are more abundant and predictable than foods appropriate for nestlings, or (b) when birds' perception of predation risk, which can be influenced by human disturbance, is greater than the real risk. By provisioning or attending their nests more or less than what is appropriate given the environmental level of resources and risks, the behavior of suburban parents may be contributing to high levels of nest failure during the nesting stage. To determine whether maladaptive parental care influences nest survival during the nestling stage, I conducted an experiment using Florida Scrub-Jays (Aphelocoma coerluscens). Suburban scrub-jays have lower nest survival during the nestling stage but higher survival during the incubation stage relative to wildland jays. Both predators and food abundance vary greatly between suburban and wildland scrub. The suburbs have a greater abundance of predators that may prey on both adult scrub-jays and their nests and more foods appropriate for adults but less nestling-appropriate food. This variation in risks and resources should affect the parental care behavior of suburban scrub-jays, which in turn may affect patterns of nest survival. In pre-treatment observations, I found that suburban females spent more time brooding than wildland birds but suburban males did not provision any more than wildland males. Experimentally increasing the perception of adult predation risk reduced parental care in both suburban and wildland females. Increasing the availability of nestling food reduced parental care in suburban females but had no effect in wildland females. Increasing food availability, but not predation risk, decreased call rates but increased call frequency in nestling scrub-jays from both habitats. However, neither parental care nor food availability had much influence on nest survival during the nestling stage. Instead, side nest concealment and the presence of helpers were the most important variables in nest survival analyses prompting other explanations besides maladaptive parental behavior or lack of nestling food resources for the habitat-specific difference in nest survival during the nestling stage.
5

Predator Behavior and Prey Demography in Patchy Habitats

Halstead, Brian J 28 March 2008 (has links)
Habitat loss and fragmentation are among the greatest threats to biodiversity, and these threats can be exacerbated or alleviated by the presence of interacting species. The effect of habitat loss and fragmentation on predator-prey systems has received extensive theoretical attention, but empirical studies of these systems yield few clear patterns. I examined the influence of prey abundance and spatial distribution on the foraging ecology and spatial ecology of Masticophis flagellum (Coachwhip) using capture-mark-recapture and radio telemetry techniques. I also examined the influence of saurophagous snake abundance on the survival rate of Sceloporus woodi (Florida Scrub Lizard) populations. Masticophis flagellum positively selected lizard and mammal prey, but within these categories it consumed prey species in proportion to their availability. Masticophis flagellum was vagile and constrained its movements within large home ranges. At all spatial scales examined, M. flagellum strongly selected Florida scrub habitat and avoided wetland habitats. The negative effect of saurophagous snake abundance best explained differences in S. woodi survival rates among patches of Florida scrub. Further loss and fragmentation of Florida scrub habitat will likely have a strong negative impact upon M. flagellum. Because it is precinctive to Florida scrub, Sceloporus woodi will also be negatively affected by the loss of this unique habitat. The potential positive effects of reduced predation pressure from M. flagellum that may accompany loss and fragmentation of Florida scrub is likely to be offset by increased predation rates by habitat and dietary generalist predators that incidentally prey upon S. woodi. Despite the sensitivity of these species to loss and fragmentation of Florida scrub, the prognosis is good for both M. flagellum and S. woodi on relatively large protected sites containing xeric habitats managed with prescribed fire.
6

Population Dynamics And Environmental Factors Influencing Herbs In Intact And Degraded Florida Rosemary Scrub

Stephens, Elizabeth 01 January 2013 (has links)
Species have complex and contextual relationships with their environment; both the relative contributions of life-history stages to population growth and the effect of environmental factors on each stage can be different among co-existing species. Timing and extent of reproduction, survival, and mortality determine population growth, species distributions, and assemblage patterns. I evaluate the role of habitat (intact, degraded) and microsite (shrub, leaf litter, bare sand) on population dynamics of Florida scrub herbs. Isolated overgrown shrubs and extensive bare sand areas in degraded scrub were expected to decrease seed predation, reduce competition of herbs with shrubs, and provide larger habitat for recruitment. I provide evidence that habitat and microsite variation influenced demography of five endemic and two common native species through effects on seed removal, emergence, and establishment. Habitat and species affected seed removal: endemic species with large seeds were removed in higher frequency in degraded habitat, likely by vertebrates, while species with small seeds were removed in higher frequency in intact habitat, by invertebrates. There was no evidence of differences in individual seed production between habitats for the two common species, C. fasciculata and B. angustifolia. Invertebrates were primarily responsible for seed removal of both species, although peak season of removal and microsite varied with species. Removal of seeds, emergence, and establishment increased with seed density. Matrix modeling indicated that population growth of C. fasciculata was greater in degraded habitat and greatest in litter microsites, and population growth of B. angustifolia was similar between habitats and greatest in bare sand. Contrasting responses among species to environmental factors in intact and degraded scrub indicated that natural disturbances are not ecologically equivalent to anthropogenic iv disturbances. Idiosyncratic species dynamics in common environments suggest that understanding relationships between life-history traits and environmental conditions will be required to facilitate restoration
7

Juvenile Ornamentation: Its Evolution, Genetic Basis, And Variation Across Habitats

Tringali, Angela 01 January 2013 (has links)
Ornamental traits are considered honest advertisements of fitness, and their evolution is usually explained in terms of sexual selection. This explanation remains unsatisfactory in some instances, for example, juvenile birds whose plumage is molted prior to adulthood and breeding. I first evaluate whether juvenile plumage reflectance signals dominance status in the Federally Threatened Florida scrub-jay (Aphelocoma coerulescens) using a combination of observational and experimental methods. Then I estimate the heritability, non-genetic maternal and environmental effects, and strength of selection on juvenile plumage reflectance using archived feather samples and a pedigree constructed from historical nest records. Finally, I compare plumage reflectance and its use as a signal between a wildland and suburban population of scrubjays. I conclude that plumage reflectance is a signal of dominance, and that social selection can also drive the evolution of sexually dimorphic traits. In this species, plumage reflectance is heritable and influenced by maternal effects, but environmental effects are inconsequential. Although this trait appears to have an important function, only mean brightness and female hue are associated with lifetime reproductive success. Plumage reflectance was more UV-shifted in the suburban birds, but there is no reason to believe that urbanization decreases the value of this plumage as a signal. However, these plumage differences may facilitate dispersal from suburban areas, contributing to the decline of suburban populations.
8

Demographic Consequences Of Managing For Florida Scrub-jays (aphelocoma Coerulescens) On An Isolated Preserve.

Lyon, Casey 01 January 2007 (has links)
Many species naturally occupy discrete habitat patches within a mosaic of habitats that vary in quality. The Florida scrub-jay (Aphelocoma coerulescens) is endemic to Florida scrub, a habitat that is naturally patchy and greatly reduced in area over recent decades owing to development and urbanization. Because of this habitat loss, future management of Florida scrub-jays will focus on smaller, fragmented tracts of land. My study examines such a tract, Lyonia Preserve, southwest Volusia County, FL. This preserve was unoccupied by scrub-jays prior to habitat restoration. The preserve is now frequently managed exclusively for scrub-jays as a habitat island surrounded by development. Management of the preserve includes roller chopping, root raking, timbering, and "oak stripping" where islands of oak patches are left intact while the rest of the area is roller chopped. I investigate what, if any, demographic consequences may be associated with the habitat management and the spatial setting of the preserve. I used population data collected in this area since 1992 to examine population growth and responses to habitat restoration within the preserve and habitat destruction outside the preserve. I mapped territories and measured survival and recruitment of scrub-jays, and dispersal into and out of the study area, for two and a half years. Since restoration, the population has shown logistic growth, with the area supporting higher than average densities of scrub-jay family groups. Observed density of the population and territory size varied between study years. Breeder survival values were positively related to territory size and significantly lower during periods of highest observed density. However, recruitment (yearling production) showed no relationship to territory size. Dispersal to isolated habitat patches was observed; likewise, several failed dispersal events were noted. No immigration into the study area was observed; however these data may be underrepresented since not all scrub-jays in and outside of the preserve were banded, and data collection was limited during the initial colonization period. High densities inside the preserve may therefore be both a result of frequent habitat management in the form of mechanical treatment as well as crowding of individuals due to outside habitat destruction. The results indicate that carrying capacity of habitat for scrub-jays may be raised by frequent, mechanical management; however, if the area is isolated, management may result in high densities and negative demographic consequences, e.g., reduced breeder survival. Negative effects of management may be avoided by subjecting smaller areas to mechanical treatment with increased time between treatments. Land managed for Florida scrub-jays should be contiguous or connected with other scrub habitats so that surplus birds from the managed areas have a refuge and do not contribute to increased densities. Regulatory officials should use caution when allowing for "take" of scrub-jay habitat as the effects may extend beyond the local habitat being destroyed.
9

Hatching Asynchrony Occurs As A Byproduct Of Maintaining Egg Viability

Aldredge, Robert 01 January 2008 (has links)
For many organisms, embryonic development begins directly after an egg (ovum) has been fertilized by sperm; however, some organisms delay the onset of embryonic development until conditions are favorable for raising young. This delayed onset of development could occur by delaying implantation of fertilized ovum on the uterine wall, as seen in many mammals. Birds delay embryonic development by laying a set of fertilized ova over a period of consecutive days. These fertilized ova are protected from the ambient environment by an exterior shell, and it is in this shell outside of the female s body that embryonic development occurs, but only when females initiate incubation. The number of fertilized ova (eggs) that can be laid by a single female in a single clutch varies among and within bird species, and understanding this variation remains a vital, unanswered question in ornithology. A latitudinal gradient in clutch size is widely recognized, but the reason for this pattern is unclear. Some birds lay relatively large clutches over many days, thus we should expect that eggs could withstand fairly long exposure to ambient temperature and remain viable. However, recent evidence suggests that egg viability declines with increased exposure to ambient temperatures. The egg viability hypothesis predicts that eggs will fail to hatch if exposed to warm ambient temperatures for prolonged periods. I conducted a natural experiment to determine whether egg viability can explain site-specific variation in hatching failure. Hatching failure is higher in a suburban population of Florida Scrub-Jays than it is in a wildland population, possibly because suburban scrub-jays lay larger clutches. Scrub-jays, like many bird species, lay one egg per day and begin incubation with the last-laid egg, thus first-laid eggs in the larger suburban clutches should be exposed to the warm ambient temperatures of sub-tropical Florida longer than first-laid eggs in the smaller clutches typical of the wildland population. As predicted, I found hatching failure is higher in first-laid eggs in the suburbs, and these eggs experience increased exposure to warm ambient temperatures. At both sites, females appear to begin incubation earlier in the laying period as ambient temperatures increase seasonally, possibly to minimize exposure to warm ambient temperatures and minimize hatching failure in first-laid eggs. However, early onset of incubation causes eggs to hatch asynchronously ( > 24 hours between the first and last-hatched egg), and hatching asynchrony increases within-brood size-asymmetries, which leads to an increased frequency of brood reduction (the nonrandom loss of last-hatched young because of starvation). Thus, a tradeoff may exist between beginning incubation earlier in the laying period to minimize hatching failure in first-laid eggs and delaying the onset of incubation to minimize hatching asynchrony and brood reduction. This tradeoff can have profound effects on avian clutch sizes, and may potentially explain the widely known negative relationship between latitude and clutch size.
10

Effects of mechanical habitat disturbance on the diversity and network structure of plant-bee interaction networks in Central Florida

Carman, Karlie 01 January 2014 (has links)
Ecological interactions within a community shape the structure of ecosystems and influence ecosystem function. Plant-pollinator interactions exist as mutualistic exchange networks that may collapse as habitat loss occurs, thereby threatening the overall health of an ecosystem. Understanding the impacts of human-mediated habitat disturbance on ecological interactions is therefore crucial for conservation efforts. Archbold Biological Station (ABS) in Venus, Florida contains over 2000 hectares of protected Florida scrub habitat nested within a human-dominated environment that is threatened by anthropogenic habitat disturbance. In past studies, over 113 bee species and 157 associated host plants, many endemic to the Lake Wales Ridge, have been found on ABS property, providing an understanding of this system's plant-bee network. Using those data as a baseline, this study investigated the effects of varying levels of mechanical habitat disturbance intensity on the diversity and network structure of plant-bee interaction networks. Flowering plant abundance, richness, diversity, and composition as well as bee abundance and composition were significantly different across mechanical habitat disturbance levels. Interactions between bees and flowering plants also differed with varying disturbance intensity. From these results, it is clear that plants, bees and interactions between them are impacted by mechanical habitat disturbance in this system. This project informs management efforts not only for natural systems with the threat of alteration, but also for agricultural systems, many of which heavily rely on flower visitation by bee pollinators. This research also contributes to the growing field of interaction ecology by increasing understanding of habitat alteration effects on a valuable ecological interaction and ultimately ecosystem function.

Page generated in 0.0694 seconds