• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 29
  • 28
  • 18
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 372
  • 372
  • 90
  • 70
  • 63
  • 57
  • 45
  • 45
  • 44
  • 44
  • 43
  • 43
  • 43
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Analýza spojování jízdních pruhů a návrh možných opatření / Traffic lanes merging analysis and possible improvement measures

Mikolášek, Igor January 2017 (has links)
The presented thesis deals with lane merging at lane drops. The theory of traffic flow is briefly introduced and put into the perspective of lane merging. Forming of queues at lane drops, the capacity drop and traffic flow behaviour at lane merging is explained. A review of existing measures at lane drops at work zones and elsewhere is provided. Measurements of traffic flow from three different locations are presented. The locations are introduced, the methods used for analysis of the data are explained and the results are provided and discussed. The capacity drop is confirmed and the first proof of concept of the later introduced metering system is presented. The behaviour of the merging drivers was found to have a significant influence on the merging capacity during congestion. Further, an overview of existing applications of traffic light in traffic flow control is provided and ramp metering and mainstream metering is explained. The new metering system for lane drops is presented including several possible modifications and extensions. Finally, the proposed metering system is tested in microsimulation software Aimsun. The simulations further confirm the viability of such systems. It brings significant capacity improvements and consequently even greater improvements of delays and travel times due to shorter queues.
352

Manipulation de la turbulence en utilisant le contrôle par mode glissant et le contrôle par apprentissage : de l'écoulement sur une marche descendante à une voiture réelle / Turbulent flow manipulation using sliding mode and machine learning control : from the flow over a backward-facing step to a real-world car

Chovet, Camila 06 July 2018 (has links)
Ce travail vise à faire une pré-évaluation des paramètres de contrôle en vue de réduire la traînée sur véhicule réel. Deux mécanismes d’actionnement différents (Murata micro-blower et couteau d’air) ont été caractérisés et comparés en vue de déterminer leurs qualités ainsi que leurs limites. Les micro-blowers ont pour but d’exciter la couche limite en vue de perturber directement les structures tourbillonnaires formées dans la couche de cisaillement. Le couteau d’air étudié, à surface arrondie, pourrait être considéré comme un dispositif actif de réduction de la traînée à effet Coanda équivalent au dispositif passif de type boat-tail. Différentes stratégies de contrôle en boucles ouverte et fermée sont examinées, telles que le soufflage continu, le forçage périodique, le contrôle du mode glissant (SMC) et le contrôle par apprentissage (MLC). La SMC est un algorithme robuste en boucle fermée permettant de suivre, d’atteindre et de maintenir une consigne prédéfinie; cette approche présente l’intérêt d’avoir une capacité d’adaptation prenant en compte les perturbations extérieures inconnues. Le contrôle par apprentissage est un contrôle sans modèle qui permet de définir des lois de contrôle efficaces qualifiées et optimisées via une fonction coût/objectif spécifique au problème donné. Une solution hybride entre MLC et SMC peut également fournir un contrôle adaptatif exploitant les mécanismes d’actionnement non linéaires les plus adaptés au problème. L’ensemble de ces techniques de contrôle ont été testées sur diverses applications expérimentales allant d’une simple configuration académique de marche descendante jusqu’à des géométries présentant une structure d’écoulement représentatives de véhicules réels. Pour la configuration de marche descendante, l’objectif était de réduire expérimentalement la zone de recirculation via une rangée de micro-jets et de l’estimer par des capteurs de pression. Les contrôles d’écoulement ont été réalisés par forçage périodique ainsi que par MLC. On démontre dans ce cas que la MLC peut surpasser le contrôle par forçage périodique. Pour la configuration sur corps épais (corps d’Ahmed), l’objectif était de réduire et/ou de maintenir la traînée aérodynamique via un couteau d’air placé sur la partie supérieure du hayon arrière et évalué par le biais d’une balance aérodynamique. Le soufflage continu et le forçage périodique ont été utilisés dans ce cas comme stratégies de contrôle en boucle ouverte permettant ainsi de faire une comparaison avec les algorithmes SMC et MLC. La pré-évaluation des paramètres de contrôle a permis d’obtenir des informations importantes en vue d’une réduction de la traînée sur un véhicule réel. Dans ce cadre, les premiers essais de caractérisation sur véhicules réels ont été réalisés sur piste et un dispositif d’actionnement ainsi qu’un protocole expérimental sont également présentés en perspective à ce travail. / The present work aims to pre-evaluate flow control parameters to reduce the drag in a real vehicle. Two different actuation mechanisms (Murata’s micro-blower, and air-knives) are characterized and compared to define their advantages and limitations. Murata micro-blowers energized the boundary layer to directly perturb the vortex structures formed in the shear layer region. The air-knife has a rounded surface, adjacent to the slit exit, that could be considered as an active boat-tail (Coanda effect) for drag reduction. Different open-loop and closed-loop control strategies are examined, such as continuous blowing, periodic forcing, sliding mode control (SMC) and machine learning control (MLC). SMC is a robust closed-loop algorithm to track, reach and maintain a predefined set-point; this approach has on-line adaptivity in changing conditions. Machine learning control is a model-free control that learns an effective control law that is judged and optimized with respect to a problem-specific cost/objective function. A hybrid between MLC and SMC may provide adaptive control exploiting the best non-linear actuation mechanisms. Finally, all these parameters are brought together and tested in real experimental applications representative of the mean wake and shear-layer structures related to control of real cars. For the backward-facing step, the goal is to experimentally reduce the recirculation zone. The flow is manipulated by a row of micro-blowers and sensed by pressure sensors. Initial measurements were carried out varying the periodic forcing. MLC is used to improve performance optimizing a control law with respect to a cost function. MLC is shown to outperform periodic forcing. For the Ahmed body, the goal is to reduce the aerodynamic drag of the square-back Ahmed body. The flow is manipulated by an air-knife placed on the top trailing edge and sensed by a force balance. Continuous blowing and periodic forcing are used as open-loop strategies. SMC and MLC algorithms are applied and compared to the open-loop cases. The pre-evaluation of the flow control parameters yielded important information to reduce the drag of a car. The first real vehicle experiments were performed on a race track. The first actuator device concept and sensor mechanism are presented.
353

Návrh regulace tlaku a průtoku v soustavě čerpadlo-nádrž / Pressure and Flow Rate Regulation Design for Pump-Tank System

Kovář, Jiří January 2014 (has links)
The proposed work is dealing with control design of pump-tank system as part of broader water-supply network with using of mechatronic approach. The main goal of this work is design of control for regulation of flow, pressure and water level in tank in water-supply network of Vsetin city. This water-supply network consists of various components, such as pumps, pipes, valves, tanks etc. For the purpose of the control design is necessary to create a model of pipe network. The solution of hydraulic analysis is obtained by using the gradient method, which was implemented into the software solution named ADAM. The results of hydraulic analysis are compared with measured values of flow and pressure and difference of these values has to be minimalized by proposed calibration and verification process. The calibration and verification process was implemented in software ADAM. The essence of design control is formulating control problem as optimization problem. Therefore the output of higher control layer is set of procedural rules, which determines for example speed of pumps in time etc. Results were verified by using for this purpose developed computational server (ADAM Server).
354

Phase Locked Flow Measurements of Steady and Unsteady Vortex Generator Jets in a Separating Boundary Layer

Hansen, Laura C. 18 March 2005 (has links) (PDF)
Vortex generator jets (VGJs) have been found to be an effective method of active separation control on the suction side of a low pressure turbine (LPT) blade at low Reynolds numbers. The flow mechanisms responsible for this control were studied and documented in order to provide a basis for future improvements in LPT design. Data were collected using a stereo PIV system that enabled all three components of velocity to be measured. Steady VGJs were injected into a laminar boundary layer on a flat plate (non-separating boundary layer) in order to more fully understand the characteristics and behavior of the produced vortices. Both normal (injected normal to the wall) and angled (injected at 30° pitch and 90° skew angles to the freestream) jets were studied. The steady jets were found to create vortices that swept the low momentum fluid up from the boundary layer while transporting high momentum freestream fluid towards the wall, a phenomenon that provides the ingredients for flow control. Pulsed VGJs were then injected on a flat plate with an applied adverse pressure gradient equivalent to that experienced by a commonly tested LPT blade. This configuration was used to study the effectiveness of the flow control exhibited by both normal and angled jets on a separating boundary layer. Time averaged results showed similar boundary layer separation reduction for both normal and angled jets; however, individual characteristics suggested that the control mechanism of the two injection angles is distinct. Steady and pulsed VGJs were then applied to a new aggressive LPT blade design to explore the effect of the jets on a separating boundary layer along the curved blade surface. Steady injection provided flow control through freestream entrainment, while pulsed jets created a two-dimensional, spanwise disturbance that reduced the separated area as it traveled downstream. A detailed fluid analysis of the uncontrolled flow around the blade was performed in order to identify the separation and reattachment points and the area of transition. This information was used as a basis for comparison with the VGJ cases to determine flow control effectiveness.
355

Global stability analysis of three-dimensional boundary layer flows

Brynjell-Rahkola, Mattias January 2015 (has links)
This thesis considers the stability and transition of incompressible boundary layers. In particular, the Falkner–Skan–Cooke boundary layer subject to a cylindrical surface roughness, and the Blasius boundary layer with applied localized suction are investigated. These flows are of great importance within the aviation industry, feature complex transition scenarios, and are strongly three-dimensional in nature. Consequently, no assumptions regarding homogeneity in any of the spatial directions are possible, and the stability of the flow is governed by an extensive three-dimensional eigenvalue problem. The stability of these flows is addressed by high-order direct numerical simulations using the spectral element method, in combination with a Krylov subspace projection method. Such techniques target the long-term behavior of the flow and can provide lower limits beyond which transition is unavoidable. The origin of the instabilities, as well as the mechanisms leading to transition in the aforementioned cases are studied and the findings are reported. Additionally, a novel method for computing the optimal forcing of a dynamical system is developed. This type of analysis provides valuable information about the frequencies and structures that cause the largest energy amplification in the system. The method is based on the inverse power method, and is discussed in the context of the one-dimensional Ginzburg–Landau equation and a two-dimensional flow case governed by the Navier–Stokes equations. / <p>QC 20151015</p>
356

Numerical Study of Shock-Dominated Flow Control in Supersonic Inlets

Davis Wagner (17565198) 07 December 2023 (has links)
<p dir="ltr">This thesis concentrates on the improvement of the quality of shock-dominated flows in supersonic inlets by controlling shock wave / boundary layer interactions (SWBLIs). SWBLI flow control has been a major issue relevant to scramjet-associated endeavors for many years. The ultimate goal of this study is to numerically investigate SWBLI flow control through the application of steady-state thermal sources --- which were defined to replicate the Joule heating effect produced by Quasi-DC electric discharges --- and compare the results with data obtained from previous experiments.</p><p dir="ltr">Numerical solutions were obtained using both a three-dimensional, unsteady Reynolds-averaged Navier-Stokes (RANS) solver with a Spalart-Allmaras (SA) Detached Eddy Simulation (DES) turbulence modeling method and also a simple three-dimensional, compressible RANS solver with a SA turbulence model. Computations employed an ideal gas thermodynamic model. The numerical code is Stanford University Unstructured (SU2), an open-source, unstructured grid, computational fluid dynamics code. The SU2 code was modified to include volumetric thermal source terms to represent the Joule heating effect of electric current flowing through the gas. The computational domain, source term configuration, and flow conditions were defined in accordance with experiments carried out at the University of Notre Dame. Mach 2 flow enters the three-dimensional test domain with a stagnation pressure of 1.7 bar. The test domain is contained by four isothermal side walls maintained at room temperature, as well as an inlet and outlet. A shock wave (SW) generator, a symmetric 10 degree wedge, is positioned on the upper surface of the test domain. The overall length of the test sections is 910 mm and inlet length of the computational domain is increased prior to the location of shock wave generator in order to allow for adequate boundary layer growth. Volumetric heating source terms were positioned on the lower surface of the test domain in the reflected SW region.</p><p dir="ltr">Experimental results show that the thermal sources create a new shock train within the duct and do not initiate significant additional pressure losses. What remains to be explored is the overall characterization of the 3D flow features and dynamics of the thermally induced SW and the effect of gas heating on total pressure losses in the test section.</p><p dir="ltr">Numerical solutions validate what is observed experimentally, and offer the ability to gather more temporally and spatially-resolved measurements to better understand and characterize shock-dominated flow control in a supersonic inlet or duct. Although thermally driven SWBLI flow control requires additional research, this study alleviates the dependency on experimentally driven data and adds insight into the nature of the complex unsteady, three-dimensional flowfield.</p>
357

Control of physics-based fluid animation using a velocity-matching method

Kim, Yootai 27 September 2006 (has links)
No description available.
358

Control of Dynamically Assisted Phase-shifting Transformers

Johansson, Nicklas January 2008 (has links)
In this thesis, controllers for power oscillation damping, transient stability improvement and power flow control by means of a Controlled Series Compensator (CSC) and and a Dynamic Power Flow Controller (DPFC) are proposed. These devices belong to the group of power system components referred to as Flexible AC Transmission System (FACTS) devices. The developed controllers use only quantities measured locally at the FACTS device as inputs, thereby avoiding the risk of interrupted communications associated with the use of remote signals for control. For power systems with one dominating, poorly damped inter-area power oscillation mode, it is shown that a simple generic system model can be used as a basis for damping- and power flow control design. The model for control of CSC includes two synchronous machine models representing the two grid areas participating in the oscillation and three reactance variables, representing the interconnecting transmission lines and the FACTS device. The model for control of DPFC is of the same type but it also includes the phase shift of the internal phase-shifting transformer of the DPFC. The key parameters of the generic grid models are adaptively set during the controller operation by estimation from the step responses in the FACTS line power to the changes in the line series reactance inserted by the FACTS device. The power oscillation damping controller is based on a time-discrete, non-linear approach which aims to damp the power oscillations and set the desired power flow on the FACTS line by means of two step changes in the line reactance separated in time by half an oscillation cycle. A verification of the proposed controllers was done by means of digital simulations using power system models of different complexities. The CSC and DPFC controllers were shown to significantly improve the small-signal- and transient stability in one four-machine system of a type commonly used to study inter-area oscillations. The CSC controller was also tested for 18 different contingencies in a 23-machine system, resulting in an improvement in both the system transient stability and the damping of the critical oscillation mode. / QC 20101112
359

Transition delay in boundary-layer flows via reactive control / Fördröjning av laminärt-turbulent omslag i gränsskiktströmning genom reaktiv kontroll

Fabbiane, Nicolò January 2016 (has links)
Transition delay in boundary-layer flows is achieved via reactive control of flow instabilities, i.e. Tollmien-Schlichting (TS) waves. Adaptive and model-based control techniques are investigated by means of direct numerical simulations (DNS) and experiments. The action of actuators localised in the wall region is prescribed based on localised measurement of the disturbance field; in particular, plasma actuators and surface hot-wire sensors are considered. Performances and limitations of this control approach are evaluated both for two-dimensional (2D) and three-dimensional (3D) disturbance scenarios. The focus is on the robustness properties of the investigated control techniques; it is highlighted that static model-based control, such as the linear-quadratic- Gaussian (LQG) regulator, is very sensitive to model-inaccuracies. The reason for this behaviour is found in the feed-forward nature of the adopted sensor/actuator scheme; hence, a second, downstream sensor is introduced and actively used to recover robustness via an adaptive filtered-x least-mean-squares (fxLMS) algorithm. Furthermore, the model of the flow required by the control algorithm is reduced to a time delay. This technique, called delayed-x least-mean-squares (dxLMS) algorithm, allows taking a step towards a self-tuning controller; by introducing a third sensor it is possible to compute on-line the suitable time-delay model with no previous knowledge of the controlled system. This self-tuning approach is successfully tested by in-flight experiments on a motor-glider. Lastly, the transition delay capabilities of the investigated control con- figuration are confirmed in a complex disturbance environment. The flow is perturbed with random localised disturbances inside the boundary layer and the laminar-to-turbulence transition is delayed via a multi-input-multi-output (MIMO) version of the fxLMS algorithm. A positive theoretical net-energy- saving is observed for disturbance amplitudes up to 2% of the free-stream velocity at the actuation location, reaching values around 1000 times the input power for the lower disturbance amplitudes that have been investigated. / I den här avhandlingen har reglertekniska metoder tillämpats för att försena omslaget från ett laminärt till ett turbulent gränsskikt genom att dämpa tillväxten av små instabiliteter, så kallade Tollmien-Schlichting vågor. Adaptiva och modellbaserade metoder för reglering av strömning har undersökts med hjälp av numeriska beräkningar av Navier-Stokes ekvationer, vindtunnelexperiment och även genom direkt tillämpning på flygplan. Plasmaaktuatorer och varmtrådsgivare vidhäftade på ytan av plattan eller vingen har använts i experimenten och modellerats i beräkningarna. Prestanda och begränsningar av den valda kontrollstrategin har utvärderats för både tvådimensionella och tredimensionella gränsskiktsinstabiliteter. Fokus har varit på metodernas robusthet, där vi visar att statiska metoder som linjär-kvadratiska regulatorer (LQG) är mycket känsliga för avvikelser från den nominella modellen. Detta beror främst på att regulatorer agerar i förkompenseringsläge (”feed-foward”) på grund av strömningens karaktär och placeringen av givare och aktuatorer. För att minska känsligheten mot avvikelser och därmed öka robustheten har en givare införts nedströms och en adaptiv fXLMS algoritm (filtered-x least-mean-squares) har tillämpats.                  Vidare har modelleringen av fXLMS-algoritmen förenklats genom att ersätta överföringsfunktionen mellan aktuatorer och givare med en lämplig tidsfördröjning.  Denna  metod som kallas för dxLMS (delayed-x least-mean-squares) kräver att ytterligare en givare införs långt uppströms för att kunna uppskatta hastigheten på de propagerande instabilitetsvågorna. Denna teknik har tillämpats framgångsrikt för reglering av gränsskiktet på vingen av ett segelflygplan. Slutligen har de reglertekniska metoderna testas för komplexa slumpmässiga tredimensionella störningar som genererats uppströms lokalt i gränsskiktet. Vi visar att en signifikant försening av laminärt-turbulentomslag äger rum med hjälp av en fXLMS algoritm. En analys av energibudgeten visar att för ideala aktuatorer och givare kan den sparade energiåtgången på grund av minskad väggfriktion vara upp till 1000 gånger större än den energi som använts för reglering.
360

Modal analysis and flow control for drag reduction on a Sport Utility Vehicle / Choix de méthode d'optimisation appliquée au contrôle d'écoulement en aérodynamique externe pour réduire les pertes aérodynamiques sur maquette de véhicule type SUV

Edwige, Stéphie 14 March 2019 (has links)
L’industrie automobile fournie de plus en plus d’effort pour optimiser l’aérodynamique externe des véhicules afin de réduire son empreinte écologique. Dans ce cadre, l’objectif de ce projet est d’examiner les structures tourbillonnaires responsables de la dégradation de traînée et de proposer une solution de contrôle actif permettant d’améliorer l’efficacité aérodynamique d’un véhicule SUV. Après une étude expérimentale de la maquette POSUV échelle réduite, une analyse modale croisée permet d’identifier les structures périodiques corrélées de l’écoulement qui pilotent la dépression sur le hayon. Une solution de contrôle optimale par jets pulsés sur le parechoc arrière, est obtenue avec un algorithme génétique. Celle-ci permet de réduire la dépression du hayon de 20% et l’analyse croisée des résultats instationnaires avec contrôle montre un changement significatif de la distribution spectrale. Après deux études préliminaires sur la rampe inclinée à 25° et sur le Corps d’Ahmed à 47°, la simulation de POSUV à partir d’un solveur LES, en éléments finis, est validé par rapport aux résultats expérimentaux. L’approfondissement des résultats 3D permet de comprendre les pertes aérodynamiques. La simulation de l’écoulement contrôlé permet également d’identifier les mécanismes du contrôle d’écoulements. / The automotive industry dedicates a lot of effort to improve the aerodynamical performances of road vehicles in order to reduce its carbon footprint. In this context, the target of the present work is to analyze the origin of aerodynamic losses on a reduced scale generic Sport Utility Vehicle and to achieve a drag reduction using an active flow control strategy. After an experimental characterization of the flow past the POSUV, a cross-modal DMD analysis is used to identify the correlated periodical features responsible for the tailgate pressure loss. Thanks to a genetic algorithm procedure, 20% gain on the tailgate pressure is obtained with optimal pulsed blowing jets on the rear bumper. The same cross-modal methodology allows to improve our understanding of the actuation mechanism. After a preliminary study of the 25° inclined ramp and of the Ahmed Body computations, the numerical simulation of the POSUV is corroborated with experiments using the cross-modal method. Deeper investigations on the three-dimensional flow characteristics explain more accurately the wake flow behavior. Finally, the controlled flow simulations propose additional insights on the actuation mechanisms allowing to reduce the aerodynamic losses.

Page generated in 0.0466 seconds