• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 62
  • 16
  • 11
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 250
  • 167
  • 68
  • 53
  • 42
  • 39
  • 36
  • 35
  • 33
  • 30
  • 29
  • 29
  • 28
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Flue gas desulphurization using natural calcium based sorbents.

Ramsaroop, Bhaveshnee R. 20 October 2014 (has links)
Power generation from coal combustion serves as a major source of energy however this process has detrimental environmental effects. SO₂ is a destructive pollutant and is oxidized with water vapour to form sulphuric acid which falls as acid rain causing corrosion to monuments, deforestation, soil erosion and destruction of the natural habitat. SO₂ emissions cause chronic respiratory diseases. The development and advancement in pollution control technologies is a pressing issue as environmental regulations become more stringent. The principal technology that is currently implemented is termed Flue Gas Desulphurization (FGD) and involves treating the flue gas before it is released into the atmosphere. Industries are constantly welcoming new research and development that would reduce their SO₂ emissions. As a result most companies are turning to sorbents to solve the major environmental crisis. In the work undertaken an effective test unit for sulphur dioxide capture was commissioned and recommended conditions for SO₂ removal were established. Four ESKOM sorbents were prepared and tested in the experimental set-up. These sorbents were then ranked according to their desulphurization efficiency. The effect of particle size on desulphurization efficiency was determined using four different size fractions and it was found that smaller particles have higher sulphur removal efficiency. The effect of the presence of CO₂ in the gas mixture was also determined by comparing the efficiencies obtained using two different flue gas mixtures. The chemical, physical and surface properties of each sorbent was also analysed and used to support the conclusions drawn from the ranking of the sorbents. A suitable model to represent the data set was also investigated and it was found that the simple shrinking core model best described the system investigated. / M.Sc.Eng. University of KwaZulu-Natal, Durban, 2013.
22

A mathematical simulation of ETS' limestone emission control (LEC) process using a moving bed configuration

Reddy, Shailendra N. January 1991 (has links)
Thesis (M.S.)--Ohio University, August, 1991. / Title from PDF t.p.
23

Adsorption of sulfuric acid and its effect on fly ash resistivity /

D'Agostini, Mark Daniel, January 1997 (has links)
Thesis (Ph. D.)--Lehigh University, 1997. / Includes vita. Bibliography: leaves 250-257.
24

High temperature reactive separation process for combined carbon dioxide and sulfur dioxide capture from flue gas and enhanced hydrogen production with in-situ carbon dioxide capture using high reactivity calcium and biomineral sorbents

Iyer, Mahesh Venkataraman. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2008 Dec 31
25

Synthesis and characterization of Ceria with an optimal oxygen storage capacity as potential medium to remove SO2 from flue gas emissions

Andrews, Gary Lyndl January 2013 (has links)
Magister Philosophiae - MPhil / Due to an increasing demand for energy, alternative renewable energy sources are investigated globally. However fossil fuels are still one of the main energy sources. The combustion of these fuels produces by-products such as SOx, NOx and CO2, which have detrimental effects on the environment and human health. Therefore, effective methods are needed to minimize the pollution and affects that these by-products cause. Catalysts are commonly employed to convert these by-products to less harmful and/or resalable products. Ceria and ceria based materials are good candidates for the removal and conversion of SOx and NOx. Ceria and ceria related materials are most effective as catalysts when they are in the nano-form with good crystallinity and nanoparticles that are uniform. The growth of nanoparticles is preceded by a nucleation process which can occur by solid-state restructuring of a gel or precipitation from a saturated solution. The precipitation method was selected to synthesize Ceria nanoparticles. Synthesis conditions such as temperature, solution type and ageing time and their effect on the physical and chemical forms of the Ceria particles were investigated. The morphology and structural properties were investigated using Scanning Electron Microscopy, X-ray diffraction and Transmission Electron Microscopy. X-ray Photoelectron Spectroscopy was used to investigate the chemical properties. It was found that low temperatures, low base volume and a solvent with a small dielectric constant favor the formation of small crystallites with a relatively large concentration of defects. These defects are desirable since they enhance the catalytic activity of ceria.
26

The growth of flue-cured tobacco in acid soils

Ryding, William Wallace January 1969 (has links)
The main effects of lime, aluminium, iron and manganese were studied in field and greenhouse grown tobacco; relations between soil and plant measurements were examined. Ground limestone, ground mixed lime, ground dolomite and slaked lime at rates equivalent to 1,000 and 2,000 lb. CaC0₃/acre increased yield and quality of flue-cured tobacco both on Triassic and granite sands, whether applied early (February/March) or late (September); the highest rate and late application were often best. Yields increased with 4,000 and 6,000 lb. dolomite/acre applied late, but quality decreased when the pH was about 6.0. Lime did not affect leaf maturity as reflected by nitrogen and reducing sugars concentration . Where leaf discolouration (slate) occurred, the best quality and least discoloured leaf had the lowest manganese concentration and was grown on limed soil. On a very acid and probably nitrogen deficient soil, lime, borax and nitrogen (nitrate only tested) reduced the discolouration and improved the quality, but potassium sulphate increased discolouration and decreased quality. Calcium concentration in the leaf was increased by lime, particularly calcitic materials, and magnesium concentration was increased by dolomite. Lime also increased the filling value and petroleum ether extract, but decreased manganese, boron, chloride and sometimes potassium, and had no effect on phosphorus, nitrogen, aluminium, iron, crude fibre, nicotine, reducing sugars and equilibrium moisture. The inorganic composition of greenhouse plants was similar; generally gypsum increased calcium concentration more than calcium carbonate but it did not affect manganese concentration, which was decreased by calcium carbonate. In the stem and roots of field grown plants (dolomite only tested), the concentration of magnesium was increased but the concentrations of calcium, potassium, aluminium and iron were unaffected. Although the concentration of nitrogen was increased and that of phosphorus was decreased in the stem, these were unaffected in the roots. Aluminium and iron behaved differently to other nutrient ions, being more concentrated in the roots than aerial plant parts. Boron and magnesium deficiencies were observed in a dry and wet year, respectively, suggesting that variable mineral deficiencies can affect responses to lime. Initially soil pH was affected more by source of lime, but later mostly by rates. Slaked lime increased the soil pH more than did ground limestone, mixed lime or dolomite. In a glasshouse experiment, pH was more important than calcium supply and in the field, the largest yields were often associated with the highest pH. In pot experiments, aluminium drastically reduced yields in nutrient solution but not in soils, whereas iron was more severe in soils; manganese had little effect on yield. Manganese was readily taken up and translocated to the tops, but aluminium and iron were mainly concentrated in the roots, as was found in field grown plants. Iron decreased manganese concentration in all plant parts and aluminium decreased calcium and manganese in nutrient solution only. Although aluminium and iron generally increased the concentration of phosphorus in the roots, they did not interfere with phosphorus transport in the plant. Manganese caused the leaf to become chlorotic and when no iron was present the upper leaves became yellow, and developed brown and white lesions. However, in soil grown plants, sufficient iron was present in the soil solution to prevent break down of tissue. Yellowing of the upper leaves also occurred when plants were grown in nutrient solution with aluminium and no iron; when both were present, the plants were darker in colour. Although aluminium damaged roots in nutrient solution, high rates of iron severely damaged leaves of plants grown in soil. Since the concentrations of aluminium, iron and manganese were decreased in the soil solution by liming, they were compared with plant growth and composition in 17 different soils, with and without lime. As was expected, lime increased soil pH. It also increased exchangeable calcium, but decreased exchangeable aluminium, iron and manganese; exchangeable magnesium and potassium and resin extractable phosphorus were not affected. As the Ratio Law does not hold for all Rhodesian soils, anion adsorption will be avoided if the soils are equilibrated with O.OOOSM CaC1₂; the concentrations of the cations in solution were affected in the same way as exchangeable cations, but phosphorus was increased. There was no relationship between yield of tobacco and its chemical composition. The correlations between soil solution data and plant composition were poor, except for manganese and phosphorus; the relation between Mn ppm. in plant vsa (superscript)Mn/a (superscript)Ca + Mg (enclosed in square root sign √) in solution, and P% vs pH₂ P0₄ or pH₂ P0₄ +½ pCa, were both curvilinear. On the other hand, all measurements of exchangeable cations were poorly correlated with plant composition. Finally yield was poorly correlated with soil solution data, and pH was as satisfactory as any other measurement tested. Manganese toxicity was observed on three soils, and a probable manganese deficiency on one. It was not possible to define a limit above which manganese toxicity occurred, but manganese deficiency developed at about 63 ppm. manganese. Variations in pH and the availability of aluminium, iron and manganese occurred when soils were incubated at about field capacity, generally the main effects having developed within seven days. In all soils, there was an initial increase in soil pH and a maximum value was reached in one to four days, decreasing by variable amounts with longer periods of incubation. Although the concentration of aluminium was larger than that of iron, the relation between both ions and soil pH was curvilinear, their concentrations increasing with decreasing pH. Increased temperature of incubation increased pH with a resultant decrease in the concentration of aluminium, but in one soil it appreciably increased the availability of iron in the early periods of incubation. Autumn and spring ploughing did not affect subsequent pH or the concentration of aluminium and iron in the soil solution. Manganese concentration varied from soil to soil and was not related to soil pH. In most soils there was a decrease in manganese concentration with length of incubation and it decreased more rapidly the lower the initial concentration. Temperature effects were variable and moisture affected the behaviour of manganese more than temperature. These findings and the distribution of aluminium, iron and manganese in the plant helped to explain the poor correlations.
27

Synthesis and characterisation of sulphonated polyethersulphone membrane materials

Boukili, Aishah January 2020 (has links)
>Magister Scientiae - MSc / With current climate change, growing population, and rapid industrialization of developing countries, water is increasingly becoming a scare resource. Within a power plant, processes that consume most water are demineralized water production (boiler make-up), heat rejection (cooling) and emission control (wet flue gas desulfurization). Eskom’s fleet of existing coal-fired power plants are not equipped with SO2 abatement technologies and therefore retrofitting of the plants will be required to meet the compliance levels for SO2 emissions.
28

Factors influencing Gypsum Crystal Morphology within a Flue Gas Desulfurization Vessel

Lewis, Kinsey M (Kinsey Morgan) 14 December 2013 (has links)
Flue gas desulfurization (FGD) is utilized by the coal-powered generating industry to safely eliminate sulfur dioxide. A FGD vessel (scrubber) synthetically creates gypsum crystals by combining limestone (CaCO3), SO2 flue gas, water and oxygen resulting in crystalline gypsum (CaSO4 ∙ 2H2O), which can be sold for an economic return. Flat disk-like crystals, opposed to rod-like crystals, are hard to dewater, lowering economic return. The objectives were to investigate the cause of varying morphologies, understand the environment of precipitation, as well as identify correlations between operating conditions and resulting unfavorable gypsum crystal growth. Results show evidence supporting airborne impurities due to the onsite coal pile, the abundance and size of CaCO3 and high Ca:SO4 ratios within the scrubber as possible factors controlling gypsum crystal morphology. In conclusion, regularly purging the system and incorporating a filter on the air intake valve will provide an economic byproduct avoiding costly landfill deposits.
29

Mass flow and temperature measurements in the flue of a woodburning appliance

Bell, Robert M. 21 July 2009 (has links)
The use of wood stoves for residential heating has been increasing over the past several years. This increased use of wood stoves has caused significant concern about increased air pollution. Development of improved emissions and efficiency measurement methods will allow the development of improved stoves. Room calorimetry is used as the standard for measuring the energy efficiency of stoves. Unfortunately, this method is expensive and few wood stove manufacturers can afford it. For this reason, flue loss methods which are generally less expensive are attractive. Flue loss methods measure either directly or indirectly the following instantaneous losses: 1. Sensible energy loss due to the flue gases being at a higher temperature than the ambient. 2. Chemical energy loss from incomplete combustion. 3. Latent energy loss due to water existing as a vapor in the flue gas. This loss is included since the higher heating value of wood is used. The instantaneous efficiency of the stove can then be determined from measurement of these three losses and the instantaneous energy input. This project is part of a larger project which has an overall objective to develop an accurate flue loss method. An accurate flue loss method is needed since many of the traditional flue loss methods have unknown accuracies. / Master of Science
30

Poly(allylamine) and derivatives for co2 capture from flue gas or ultra dilute gas streams such as ambient air

Khunsupat, Ratayakorn 07 July 2011 (has links)
Polymers rich in primary amine groups are proposed to be effective adsorbents for the reversible adsorption of CO2 from moderately dilute gas streams (10% CO2) and ultra-dilute gas streams (e.g. ambient air, 400 ppm CO2), with their performance under ultra-dilute conditions being competitive with or exceeding the state-of-the-art adsorbents based on supported poly(ethyleneimine) (PEI). The CO2 adsorption capacity (mmol CO2/g sorbent) and amine efficiency (mmol CO2/mmol amine) of linear poly(allylamine) (PAA), cross-linked poly(allylamine) prepared by post-polymerization crosslinking with epichlorohydrin (PAAEPI), and branched poly(allylamine) prepared by branching of poly(allylamine) with divinylbenzene (PAADVB) are presented here and compared with state-of-the-art adsorbents based on supported PEI, specifically branched and linear, low molecular weight PEI. Silica mesocellular foam, MCF, serves as the support material for impregnation of the amine polymers. In general, branched polymers are found to yield more effective adsorbents materials. Overall, the results of this work show that linear PAA, cross-linked PAAEPI, and branched PAADVB are promising candidates for solid adsorbents with high capacity for CO2.

Page generated in 0.0465 seconds