• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 24
  • 11
  • 2
  • Tagged with
  • 91
  • 49
  • 33
  • 29
  • 25
  • 14
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigation of megakaryopoiesis and the acute phase of ischemic stroke by advanced fluorescence microscopy / Untersuchungen der Megakaryopoese und der akuten Phase des ischämischen Schlaganfalls mit Hilfe von hochentwickelter Fluoreszenzmikroskopie

Gorelashvili, Maximilian Georg January 2019 (has links) (PDF)
In mammals, anucleate platelets circulate in the blood flow and are primarily responsible for maintaining functional hemostasis. Platelets are generated in the bone marrow (BM) by megakaryocytes (MKs), which mainly reside directly next to the BM sinusoids to release proplatelets into the blood. MKs originate from hematopoietic stem cells and are thought to migrate from the endosteal to the vascular niche during their maturation, a process, which is, despite being intensively investigated, still not fully understood. Long-term intravital two photon microscopy (2PM) of MKs and vasculature in murine bone marrow was performed and mean squared displacement analysis of cell migration was performed. The MKs exhibited no migration, but wobbling-like movement on time scales of 3 h. Directed cell migration always results in non-random spatial distribution. Thus, a computational modelling algorithm simulating random MK distribution using real 3D light-sheet fluorescence microscopy data sets was developed. Direct comparison of real and simulated random MK distributions showed, that MKs exhibit a strong bias to vessel-contact. However, this bias is not caused by cell migration, as non-vessel-associated MKs were randomly distributed in the intervascular space. Furthermore, simulation studies revealed that MKs strongly impair migration of other cells in the bone marrow by acting as large-sized obstacles. MKs are thought to migrate from the regions close to the endosteum towards the vasculature during their maturation process. MK distribution as a function of their localization relative to the endosteal regions of the bones was investigated by light sheet fluorescence microscopy (LSFM). The results show no bone-region dependent distribution of MKs. Taken together, the newly established methods and obtained results refute the model of MK migration during their maturation. Ischemia reperfusion (I/R) injury is a frequent complication of cerebral ischemic stroke, where brain tissue damage occurs despite successful recanalization. Platelets, endothelial cells and immune cells have been demonstrated to affect the progression of I/R injury in experimental mouse models 24 h after recanalization. However, the underlying Pathomechanisms, especially in the first hours after recanalization, are poorly understood. Here, LSFM, 2PM and complemental advanced image analysis workflows were established for investigation of platelets, the vasculature and neutrophils in ischemic brains. Quantitative analysis of thrombus formation in the ipsilateral and contralateral hemispheres at different time points revealed that platelet aggregate formation is minimal during the first 8 h after recanalization and occurs in both hemispheres. Considering that maximal tissue damage already is present at this time point, it can be concluded that infarct progression and neurological damage do not result from platelet aggregated formation. Furthermore, LSFM allowed to confirm neutrophil infiltration into the infarcted hemisphere and, here, the levels of endothelial cell marker PECAM1 were strongly reduced. However, further investigations must be carried out to clearly identify the role of neutrophils and the endothelial cells in I/R injury. / In Säugetieren zirkulieren kernlose Thrombozyten im Blutstrom und sind primär für die Aufrechterhaltung der funktionellen Hämostase verantwortlich. Thrombozyten werden im Knochenmark durch Megakaryozyten gebildet, die sich hauptsächlich in direkter Nähe zu Knochenmarkssinusoiden befinden, um Proplättchen in das Blut freizusetzen. Megakaryo-zyten stammen von hämatopoetischen Stammzellen ab und man glaubt, dass sie während ihres Reifungspro¬zesses von der endostalen in die vaskuläre Nische wandern – ein Prozess, der trotz intensiver Forschung noch nicht vollständig verstanden ist. Langzeit-Zwei-Photonen-Mikroskopie von Megakaryozyten und des Gefäßbaums wurde in murinem Knochenmark von lebenden Tieren in Kombination mit der Analyse der mittleren quadratischen Verschiebung der Zellmigration durchgeführt. Die Megakaryozyten zeigten keine Migration, sondern eine wackelartige Bewegung auf Zeitskalen von 3 Stunden. Die gerichtete Zellmigration führt stets zu einer nicht zufälligen räumlichen Verteilung der Zellen. Daher wurde ein Computermodellierungsalgorithmus entwickelt, der eine zufällige Megakaryo¬zytenverteilung unter Verwendung von realen 3D-Lichtblatt-Fluoreszenzmikroskopie-Datensätzen simuliert. Der direkte Vergleich realer und simuliert zufälliger Megakaryozyten¬verteilungen zeigte, dass MKs stark mit Knochenmarksgefäßen assoziiert sind. Dieses wird jedoch nicht durch Zellmigration verursacht, da nicht-Gefäß-assoziierte MKs zufällig im intervaskulären Raum verteilt waren. Darüber hinaus zeigten Simulationsstudien, dass Megakaryozyten die Migration anderer Zellen im Knochenmark stark beeinträchtigen, da sie als sterische Hindernisse wirken. Es wird angenommen, dass MKs während ihres Reife¬prozesses von den Regionen in der Nähe des Endosteums in Richtung des Gefäßsystems wandern. Die Megakaryozytenverteilung als Funktion ihrer Lokalisierung relativ zu den endo¬stalen Regionen des Knochens wurde durch Lichtblattmikroskopie untersucht. Die Ergebnisse zeigen keine knochenregionabhängige Verteilung von Megakaryozyten. Zusammenge¬nommen widerlegen die neu etablierten Methoden und erzielten Ergebnisse das Modell der Megakaryozyten¬migration während ihrer Reifung. Ischämie-Reperfusionsschaden (I/R) ist eine häufige Komplikation des zerebralen ischämischen Schlaganfalls, bei dem trotz erfolgreicher Rekanalisierung eine Schädigung des Hirngewebes auftritt. Es wurde gezeigt, dass Thrombozyten, Endothelzellen und Immunzellen das Fortschreiten der I/R-Verletzung in experimentellen Mausmodellen 24 Stunden nach der Rekanalisierung beeinflussen. Die zugrundeliegenden Pathomechanismen, insbesondere in den ersten Stunden nach der Rekanalisierung, sind jedoch kaum verstanden. Hier wurden Lichtblattmikroskopie, Zwei-Photonen-Mikroskopie und ergänzende hochkom-plexe Bildanalyse-Workflows zur Untersuchung von Thrombozyten, der Gefäße und Neutro-philen in ischämischen Gehirnen etabliert. Die quantitative Analyse der Thrombusbildung in der ipsilateralen und kontralateralen Hemisphäre zu verschiedenen Zeitpunkten zeigte, dass die Thrombozytenaggregationsbildung während der ersten 8 Stunden nach der Rekanalisierung minimal ist und in beiden Hemisphären auftritt. In Anbetracht dessen, dass zu diesem Zeitpunkt bereits eine maximale Gewebeschädigung vorliegt, kann geschlossen werden, dass die Infarkt¬progression und der neurologische Schaden nicht aus der Bildung von Thrombozytenaggre¬gaten resultieren. Darüber hinaus erlaubte Lichtblattmikroskopie die Neutrophileninfiltration in die infarzierte Hemisphäre zu bestätigen und hier waren die Spiegel des Endothelzellmarkers PECAM1 stark reduziert. Es müssen jedoch weitere Untersuchungen durchgeführt werden, um die Rolle von Neutrophilen und Endothelzellen bei I/R-Verletzungen klar zu identifizieren.
32

Markierung postsynaptischer Proteine für die hochauflösende Fluoreszenzmikroskopie / Labeling of postsynaptic proteins for super-resolution microscopy

Neubert, Franziska January 2019 (has links) (PDF)
Das menschliche Gehirn ist ein Organ, das aufgrund seiner Komplexität und zellulären Diversität noch am wenigsten verstanden ist. Eine der Ursachen dafür sind zahlreiche Herausforderungen in diversen neurobiologischen Bild-gebungsverfahren. Erst seit der Erfindung der hochauflösenden Fluoreszenz-mikroskopie ist es möglich, Strukturen unterhalb der Beugungsgrenze zu visua-lisieren und somit eine maximale Auflösung von bis zu 20 nm zu erreichen. Zusätzlich hängt die Fähigkeit, biologische Strukturen aufzulösen, von der Markierungs-größe und -dichte ab. Derzeit ist die häufigste Methode zur Proteinfärbung die indirekte Antikörperfärbung, bei der ein Fluorophor-markierter Sekundärantikörper an einen Epitop-spezifischen Primärantikörper bindet. Dabei kann der Abstand von Zielstruktur und Fluorophor bis zu 30 nm betragen, was eine Auflösungs-verminderung zur Folge haben kann. Aufgrund dessen wurden in dieser Arbeit alternative Markierungsmethoden getestet, um postsynaptische Proteine sicht-bar zu machen. Zunächst wurde der postsynaptische N-Methyl-D-Aspartat (NMDA)-Rezeptor mit Hilfe konventioneller indirekter Antikörperfärbung markiert. Hier war die NR1-Untereinheit des NMDA-Rezeptors von besonderem Interesse, da diese in der Autoimmunerkrankung Anti-NMDA-Rezeptor-Enzephalitis invol-viert ist. Patienten dieser seltenen Krankheit bilden Autoantikörper gegen die NR1-Untereinheit, wodurch ein schneller reversibler Verlust der NMDA-Rezeptoren auf der Postsynapse induziert wird. Wichtige Informationen können nicht mehr ausreichend weitergegeben werden, was psychiatrische und neurologi-sche Störungen zur Folge hat. In dieser Arbeit wurden sowohl kommerzielle NR1-Antikörper, als auch rekombinante monoklonale NR1-Antikörper von Patien-ten mit Anti-NMDA-Rezeptor-Enzephalitis getestet. In konfokalen und in hochaufgelösten SIM- (engl. structured illumination microscopy) und dSTORM- (engl. direct stochastic optical reconstruction microscopy) Messun-gen konnten kommerzielle NR1-Antikörper keine erfolgreichen Färbungen erzielen. Dagegen erwiesen sich die rekombinanten monoklonalen NR1-Patientenantikörper als sehr spezifisch, sowohl in primären Neuronen als auch im Hippocampus von murinen Gehirnschnitten und lieferten gute Kolokalisati-onen mit dem postsynaptischen Markerprotein Homer. Um die optische Auflösung zu verbessern, wurde eine neue Markierungs-methode mit sog. „Super-Binde-Peptiden“ (SBPs) getestet. SBPs sind modifi-zierte Peptide, die erhöhte Affinitäten und Spezifitäten aufweisen und mit ei-ner Größe von ~ 2,5 nm wesentlich kleiner als Antikörper sind. In dieser Arbeit bestätigte sich ein kleines hochspezifisches SPB, das an den Fluoreszenzfarb-stoff Tetra- methylrhodamin (TMR) gekoppelt ist, als effektiver Marker für das Ankerpro-tein Gephyrin. Gephyrin ist für die Lokalisation und Verankerung einiger post-synaptischer Rezeptoren zuständig, indem es sie mit dem Cytoskelett der Zelle verbindet. SIM-Messungen in primären Neuronen zeigten eine bessere Clus-terrepräsentation bei der Färbung von Gephyrin mit SBPs, als mit Antikörper-färbung. Zusätzlich wurden Kolokalisationsanalysen von Gephyrin zusammen mit dem inhibito-rischen präsynaptischen vesikulären GABA-Transporter VGAT durchgeführt. Eine weitere Färbemethode stellte die bioorthogonale Click-Färbung durch die Erweiterung des eukaryotischen genetischen Codes (engl. genetic code ex-pansion, GCE) dar. Dabei wurde eine unnatürliche, nicht-kanonische Amino-säure (engl. non-canonical amino acid, ncAA) ins Zielprotein eingebaut und in Kombination mit der Click-Chemie ortsspezifisch mit organischen Tetrazin-Farbstoff-Konjugaten angefärbt. Organische Fluorophore haben den Vorteil, dass sie mit einer Größe von 0,5 – 2 nm sehr klein sind und damit die natürli-chen Funktionen der Proteine in der Zelle kaum beeinflussen. In dieser Arbeit wurde zum ersten Mal gezeigt, dass der tetramere postsynaptische NMDA-Rezeptor durch die Amber-Supres-sionsmethode bioorthogonal angefärbt werden konnte. Aus sieben verschiede-nen Amber-Mutanten der NR1-Untereinheit stellte sich die Y392TAG-NR1-Mutante als diejenige mit der besten Proteinexpression, Färbeeffizienz und rezeptorfunktionalität heraus. Dies konnte durch Fluoreszenzmikroskopie- und Whole-Cell Patch-Clamp-Experimenten gezeigt werden. Die bioorthogo-nale Click-Färbung durch GCE eignete sich für die Färbung des NMDA-Rezeptors in verschiedenen Zelllinien, mit unterschiedlichen Tetrazin-Farbstoff-Konjugaten und für Lebendzellexperimente. In dSTORM-Messungen erwies sich das Tetrazin-Cy5-Farbstoff-Konjugat als ideal aufgrund seiner Grö-ße, Photostabilität, Helligkeit und seines geeigneten Blinkverhaltens, sodass eine homogene NMDA-Rezeptorverteilung auf der Zellmembran gezeigt wer-den konnte. NR1-Antikörperfärbungen wiesen dagegen starke Clusterbildun-gen auf. Die Ergebnisse konnten belegen, dass kleinere Farbstoffe eine deut-lich bessere Zugänglichkeit zu ihrem Zielprotein haben und somit besser für die hochauflösende Fluoreszenzmikroskopie geeignet sind. / Due to its complexity and cellular diversity, the human brain is an organ which is poorly understood. In particular, there are numerous challenges in different neurobiological imaging processes. The advent of super-resolution fluorescence microscopy, where a maximal optical resolution of up to 20 nm is achievable, made it feasible to visualize structures beyond the diffraction limit. The ability to resolve biological structures is further dependent on the labeling size and density. Currently, indirect antibody staining is the most common method for protein labeling. Thereby, a fluorophore marked secondary anti-body binds an epitope specific primary antibody. Consequently, the off-distance between target structure and fluorophore can be up to 30 nm, which could provoke a decrease of resolution. As a result, alternative labeling methods were tested in this work to visualize postsynaptic proteins. Initially, labeling of the postsynaptic N-methyl-D-aspartate (NMDA) recep-tor was performed with conventional indirect antibody staining. Here, the NR1 subunit of the NMDA receptor was of special interest because it is involved in the autoimmune disease of Anti-NMDA receptor encephalitis. Patients of this rare disorder produce autoantibodies against the NR1 subunit, which induces a fast and reversible reduction of NMDA receptors on the postsynapse. Important synaptic information cannot be transferred sufficiently which results in psychiatrical and neurological deficiencies. In this work commercial NR1 antibodies as well as recombinant monoclonal NR1 antibodies from patients with Anti-NMDA receptor encephalitis were tested. In confocal and super-resolved SIM (structured illumination microscopy) and dSTORM (direct sto-chastic optical reconstruction microscopy) measurements the commercial NR1 antibodies could not obtain a successful staining. In contrast, recombinant monoclonal NR1 patient antibodies turn out to be very specific, both in primary neurons and in the hippocampus of murine brain slices. Additionally, they show perfect colocaliza-tion together with the postsynaptic marker protein Homer. To further improve the optical resolution, a new labeling method was tested with so called “super-binding peptides” (SBPs). SBPs are modified peptides with enhanced affinity and specificity. With a size of ~ 2.5 nm, they are much smaller than antibodies. In this work a small, highly specific SBP, coupled to the fluorescent dye tetramethylrhodamine (TMR), turned out to be an efficient marker for the postsynaptic anchor protein gephyrin. Gephyrin is responsible for the localization and anchoring of postsynaptic receptors by connecting them with the cytoskeleton of the cell. SIM measurements in primary neurons showed better cluster representation of gephyrin stained with SBPs than with antibody stain-ing. In addition, colocalization analysis of gephyrin together with the inhibitory presynaptic vesicular GABA transporter VGAT was performed. Another staining method was the bioorthogonal click chemistry by the eu-karyotic genetic code expansion (GCE). Thereby, an unnatural, non-canonical amino acid (ncAA) is incorporated into the target protein and click-labeled site- specifically with an organic tetrazine dye conjugate. Organic dyes are very small with a size of only 0.5 – 2 nm and barely influence the natural function of proteins within the cell, which is beneficial for super-resolution microscopy. In this work, tetrameric postsynaptic NMDA receptors were bioorthogonally la-beled via the amber suppression method for the first time. From a series of seven different amber mutants of the NR1 subunit, the Y392TAG mutant was the one with the best protein expression, labeling efficiency and receptor functionality, as shown by fluorescence microscopy and whole-cell patch clamp experiments. The bioortho-gonal click staining by GCE was suitable for the NMDA receptor stain-ing in different cell lines, with various tetrazine dye conjugates and for live-cell experiments. In dSTORM measurements the tetrazine-Cy5 dye conjugate was ideal because of its size, photostability, brightness and appropriate blinking be-havior. Accordingly, a homogenous NMDA receptor distribution on the cell membrane was observed. In contrast, NR1 antibody staining showed big cluster formation. The results show that small labels have a better accessibility to its target and are therefore much more suitable for super-resolution microscopy.
33

Function of the Drosophila adhesion-GPCR Latrophilin/CIRL in nociception and neuropathy / Funktionelle Rolle des Drosophila aGPCR Latrophilin/CIRL in Nozizeption und Neuropathie

Dannhäuser, Sven January 2021 (has links) (PDF)
Touch sensation is the ability to perceive mechanical cues which is required for essential behaviors. These encompass the avoidance of tissue damage, environmental perception, and social interaction but also proprioception and hearing. Therefore research on receptors that convert mechanical stimuli into electrical signals in sensory neurons remains a topical research focus. However, the underlying molecular mechanisms for mechano-metabotropic signal transduction are largely unknown, despite the vital role of mechanosensation in all corners of physiology. Being a large family with over 30 mammalian members, adhesion-type G protein-coupled receptors (aGPCRs) operate in a vast range of physiological processes. Correspondingly, diverse human diseases, such as developmental disorders, defects of the nervous system, allergies and cancer are associated with these receptor family. Several aGPCRs have recently been linked to mechanosensitive functions suggesting, that processing of mechanical stimuli may be a common feature of this receptor family – not only in classical mechanosensory structures. This project employed Drosophila melanogaster as the candidate to analyze the aGPCR Latrophilin/dCIRL function in mechanical nociception in vivo. To this end, we focused on larval sensory neurons and investigated molecular mechanisms of dCIRL activity using noxious mechanical stimuli in combination with optogenetic tools to manipulate second messenger pathways. In addition, we made use of a neuropathy model to test for an involvement of aGPCR signaling in the malfunctioning peripheral nervous system. To do so, this study investigated and characterized nocifensive behavior in dCirl null mutants (dCirlKO) and employed genetically targeted RNA-interference (RNAi) to cell-specifically manipulate nociceptive function. The results revealed that dCirl is transcribed in type II class IV peripheral sensory neurons – a cell type that is structurally similar to mammalian nociceptors and detects different nociceptive sensory modalities. Furthermore, dCirlKO larvae showed increased nocifensive behavior which can be rescued in cell specific reexpression experiments. Expression of bPAC (bacterial photoactivatable adenylate cyclase) in these nociceptive neurons enabled us to investigate an intracellular signaling cascade of dCIRL function provoked by light-induced elevation of cAMP. Here, the findings demonstrated that dCIRL operates as a down-regulator of nocifensive behavior by modulating nociceptive neurons. Given the clinical relevance of this results, dCirl function was tested in a chemically induced neuropathy model where it was shown that cell specific overexpression of dCirl rescued nocifensive behavior but not nociceptor morphology. / Der Tastsinn ist die Fähigkeit, mechanische Reize wahrzunehmen, die für essentielle Verhaltensweisen notwendig sind. Dazu gehören die Vermeidung von Gewebsschädigungen, die Wahrnehmung der Umwelt und soziale Interaktion, aber auch die Propriozeption und das Hören. Daher bleibt die Forschung an Rezeptoren, die mechanische Reize in sensorischen Neuronen in elektrische Signale umwandeln, ein aktueller Forschungsschwerpunk. Die zugrundeliegenden molekularen Mechanismen für die mechanometabotrope Signalübertragung sind trotz der wesentlichen Rolle des Tastsinns in allen Bereichen der Physiologie weitgehend unbekannt. Adhäsions G-Protein gekoppelte Rezeptoren (aGPCRs), eine große Molekülfamilie mit über 30 Vertretern im Menschen, sind an einer Vielzahl von physiologischen Prozessen beteiligt. Demzufolge wird ein Zusammenhang zwischen diesen Rezeptoren und verschiedenen Erkrankungen des Menschen, wie z. B. Entwicklungsstörungen, Defekte des Nervensystems, Allergien und Krebs, angenommen. Mehrere aGPCRs wurden kürzlich mit mechanosensitiven Funktionen in Verbindung gebracht, was darauf hindeutet, dass die Verarbeitung mechanischer Reize ein gemeinsames Merkmal dieser Rezeptorfamilie ist – nicht nur in klassischen mechanosensorischen Strukturen. In diesem Projekt wurde Drosophila melanogaster verwendet, um die Funktion des aGPCR-Latrophilin/dCIRL in der mechanischen Nozizeption in vivo zu analysieren. Zu diesem Zweck konzentriert sich diese Arbeit auf mechano-sensorische Neurone (Typ II Klasse IV) der Fruchtfliegenlarve, um die molekularen Mechanismen der dCIRL-Aktivität zu untersuchen. Hierzu wurden noxische mechanische Reize in Kombination mit optogenetischen Werkzeugen, zur Manipulation der Second-Messenger-Signalübertragung, herangezogen. Zusätzlich wurde ein Neuropathie-Modell etabliert, um eine Beteiligung des aGPCRs dCIRL am beeinträchtigten peripheren Nervensystem zu testen. Zu diesem Zweck untersucht und charakterisiert diese Studie das nozizeptive Verhalten in dCirl-Nullmutanten (dCirlKO) und die RNA-Interferenz (RNAi) Methode, um zellspezifische Manipulationen auszuführen. Die Ergebnisse zeigen, dass dCirl in spezifischen peripheren sensorischen Neuronen (C4da) transkribiert wird - ein Zelltyp, der Nozizeptoren in Säugern strukturell ähnlich ist und verschiedene nozizeptive sensorische Modalitäten vermittelt. Darüber hinaus zeigen dCirlKO-Larven ein erhöhtes nozizeptives Verhalten, welches mittels zellspezifischer Reexpression gerettet werden kann. Die Expression von bPAC (bakterielle photoaktivierbare Adenylatcyclase) in diesen nozizeptiven Neuronen ermöglichte es, intrazelluläre Signalkaskaden von CIRL zu untersuchen, welche durch lichtinduzierte Erhöhung von cAMP angeregt werden. Dieser Versuch zeigt, dass dCIRL durch die Modulation nozizeptiver Neuronen eine Herabregulation des nozizeptiven Verhaltens bewirkt. Angesichts der klinischen Relevanz dieses Ergebnisses wurde die dCirl-Funktion in einem chemisch induzierten Neuropathie-Modell getestet. Dabei stellte sich heraus, dass zellspezifische Überexpression von dCirl eine ausgeprägte Hyperalgesie reduziert, morphologische Schädigungen hingegen nicht gerettet werden konnten.
34

Sharpening super-resolution by single molecule localization microscopy in front of a tuned mirror / Einzelmolekül-Lokalisationsmikroskopie vor einem abgestimmten Spiegel zur Auflösungsverbesserung

Heil, Hannah Sophie January 2020 (has links) (PDF)
The „Resolution Revolution" in fluorescence microscopy over the last decade has given rise to a variety of techniques that allow imaging beyond the diffraction limit with a resolution power down into the nanometer range. With this, the field of so-called super-resolution microscopy was born. It allows to visualize cellular architecture at a molecular level and thereby achieve a resolution level that had been previously only accessible by electron microscopy approaches. One of these promising techniques is single molecule localization microscopy (SMLM) in its most varied forms such as direct stochastic optical reconstruction microscopy (dSTORM) which are based on the temporal separation of the emission of individual fluorophores. Localization analysis of the subsequently taken images of single emitters eventually allows to reconstruct an image containing super-resolution information down to typically 20 nm in a cellular setting. The key point here is the localization precision, which mainly depends on the image contrast generated the by the individual fluorophore’s emission. Thus, measures to enhance the signal intensity or reduce the signal background allow to increase the image resolution achieved by dSTORM. In my thesis, this is achieved by simply adding a reflective metal-dielectric nano-coating to the microscopy coverslip that serves as a tunable nano-mirror. I have demonstrated that such metal-dielectric coatings provide higher photon yield at lower background and thus substantially improve SMLM performance by a significantly increased localization precision, and thus ultimately higher image resolution. The strength of this approach is that ─ except for the coated cover glass ─ no specialized setup is required. The biocompatible metal-dielectric nano-coatings are fabricated directly on microscopy coverslips and have a simple three-ply design permitting straightforward implementation into a conventional fluorescence microscope. The introduced improved lateral resolution with such mirror-enhanced STORM (meSTORM) not only allows to exceed Widefield and Total Internal Reflection Fluorescence (TIRF) dSTORM performance, but also offers the possibility to measure in a simplified setup as it does not require a special TIRF objective lens. The resolution improvement achieved with meSTORM is both spectrally and spatially tunable and thus allows for dual-color approaches on the one hand, and selectively highlighting region above the cover glass on the other hand, as demonstrated here. Beyond lateral resolution enhancement, the clear-cut profile of the highlighted region provides additional access to the axial dimension. As shown in my thesis, this allows for example to assess the three-dimensional architecture of the intracellular microtubule network by translating the local localization uncertainty to a relative axial position. Even beyond meSTORM, a wide range of membrane or surface imaging applications may benefit from the selective highlighting and fluorescence enhancing provided by the metal-dielectric nano-coatings. This includes for example, among others, live-cell Fluorescence Correlation Spectroscopy and Fluorescence Resonance Energy Transfer studies as recently demonstrated. / Die „Auflösungsrevolution" in der Fluoreszenzmikroskopie hat während des letzten Jahrzehnts eine Vielzahl von Techniken hervorgebracht, die es ermöglichen, das Beugungslimit zu überschreiten und eine Bildauflösung bis in den Nanometerbereich zu erreichen. Die Entwicklung der sogenannten superhochauflösenden Fluoreszenzmikroskopie ermöglicht es die zelluläre Architektur auf molekularer Ebene zu visualisieren und erreicht damit ein Auflösungsvermögen, wie es bisher nur mit elektronenmikroskopischen Ansätzen möglich war. Der Begriff Einzelmolekül-Lokalisationsmikroskopie fasst zum Beispiel eine Vielzahl der unterschiedlichsten Ansätze zusammen. Wie zum Beispiel auch die direkte stochastische optische Rekonstruktionsmikroskopie (dSTORM) basieren diese auf der zeitlichen Trennung der Emission einzelner Fluorophore. Die Lokalisierungsanalyse der so aufgenommenen Bilder von einzelnen Emittern ermöglicht schließlich die Rekonstruktion eines superhochaufgelösten Bildes, das eine Auflösung von typischerweise 20 nm in einer zellularen Umgebung erreicht. Der entscheidende Punkt ist hierbei die Lokalisierungsgenauigkeit, die hauptsächlich vom Bildkontrast abhängt. Eine Erhöhung der Signalintensität oder Reduzierung des Signalhintergrunds ermöglichen es daher, die mit dSTORM erzielte Bildauflösung zu erhöhen. In meiner Dissertation wird dies durch eine einfache reflektierende metalldielektrische Nanobeschichtung auf dem Mikroskop-Deckglas erreicht, das so als abstimmbarer Nanospiegel dient. Ich zeige in dieser Arbeit, dass solche metalldielektrischen Beschichtungen eine höhere Photonenausbeute bei niedrigerem Hintergrund liefern und somit die SMLM-Leistung durch eine signifikant erhöhte Lokalisierungsgenauigkeit und damit letztendlich einer höheren Bildauflösung wesentlich verbessern. Die Stärke dieses Ansatzes besteht darin, dass mit Ausnahme des beschichteten Deckglases keine spezielle Anpassung des experimentellen Aufbaus erforderlich ist. Die biokompatiblen metallisch-dielektrischen Nanobeschichtungen mit einem einfachen dreischichtigen Design werden direkt auf Mikroskop-Deckgläsern hergestellt, was eine direkte Implementierung in ein herkömmliches Fluoreszenzmikroskop ermöglicht. Die mit diesem spiegelverstärkten STORM (meSTORM) eingeführte verbesserte laterale Auflösung ermöglicht es nicht nur, die Bildauflösung von Weitfeld und Total Internal Reflection Fluorescence (TIRF) dSTORM zu übertreffen, sondern bietet auch die Möglichkeit, in einem vereinfachten Aufbau zu messen, da kein spezielles TIRF-Objektiv erforderlich ist. Die mit meSTORM erzielte Auflösungsverbesserung ist sowohl spektral als auch räumlich abstimmbar und ermöglicht so einerseits zweifarbige Bildgebung und andererseits eine gezielte Hervorhebung eines bestimmten Bereichs über dem Deckglas. Über die Verbesserung der lateralen Auflösung hinaus bietet das klare Profil des Verstärkungseffekts zusätzliche Information über die axiale Position. Wie in meiner Dissertation gezeigt, kann damit beispielsweise die dreidimensionale Architektur des intrazellulären Mikrotubuli-Netzwerks aufgelöst werden, indem die lokale Lokalisierungsunsicherheit in eine relative axiale Position übersetzt wird. Über meSTORM hinaus kann die selektive Hervorhebung und Fluoreszenzverstärkung durch die metalldielektrischen Nanobeschichtungen für eine Vielzahl von Membran- oder Oberflächenabbildungsanwendungen von Vorteil sein. Dies umfasst unter anderem Anwendungen wie die Fluoreszenzkorrelationsspektroskopie in lebenden Zellen und Fluoreszenzresonanz-energietransfer, wie bereits kürzlich gezeigt wurde.
35

Photolumineszenzmikroskopie und -spektroskopie endohedraler Farbstoffe in Bornitridnanoröhren / Photoluminescence microscopy and spectroscopy of endohedral dyes in boron nitride nanotubes

Fuhl, Lucas January 2024 (has links) (PDF)
Im Rahmen der vorliegenden Dissertation wurde untersucht, wie die Einkapselung organischer Farbstoffmoleküle in Bornitridnanoröhren (BNNTs) die photophysikalischen Eigenschaften der Fluorophore beeinflusst. Als Farbstoffe wurden hierbei alpha-Quaterthiophen (4T), alpha-Sexithiophen (6T), alpha-Octithiophen (8T) sowie Nilrot (NR) ausgewählt. Die eingesetzten BNNTs besitzen einen nominellen Durchmesser von \(5 \pm 2\)nm. Für die Charakterisierung der reinen Farbstoffe und der hybriden Systeme aus Farbstoff und Nanoröhre kam ein Laboraufbau zum Einsatz, der neben Absorptions- und Photolumineszenz (PL)-Spektroskopie auch PL-Mikroskopie ermöglicht. Zusätzlich lässt sich damit auch eine zeitaufgelöste Untersuchung der PL (engl. time correlated single photon counting, TCSPC) im Ensemble und an einzelnen, separierten Nano-Objekten (mit Farbstoff gefüllte BNNTs) umsetzen. In Kapitel 5 wurden zunächst die freien Farbstoffe in Lösung charakterisiert. Es hat sich gezeigt, dass sowohl 4T als auch NR im verwendeten Lösemittel Dimethylformamid (DMF) löslich sind, wohingegen 6T und 8T hier eine geringere Löslichkeit zeigen. Die unterschiedlichen Verläufe der konzentrationsabhängigen PL-Spektren für 4T und 6T in DMF lassen sich vermutlich auf diesen Löslichkeitsunterschied zurückführen. Zudem wurden Extinktionskoeffizienten für 4T und NR mittels konzentrationsabhängiger Absorptionsspektren bestimmt und es zeigte sich eine gute Übereinstimmung mit der Literatur. Für 6T und 8T war eine Bestimmung aufgrund der geringen Löslichkeit nicht möglich, weshalb auf Literaturwerte zurückgegriffen wurde oder diese extrapoliert wurden (8T). In Kapitel 6 erfolgte die detaillierte Charakterisierung der mit Oligothiophenen gefüllten BNNTs. Die Befüllung wurde dabei im Wesentlichen nach einem von C. Allard publizierten Verfahren durchgeführt und auf die zusätzlichen Fluorophore 4T, 8T und NR übertragen. Für Messungen mittels UV-Vis-Spektroskopie in Lösung bzw. Dispersion hat sich beim Farbstoff 6T gezeigt, dass sich das Absorptionsmaximum von 407nm (freies 6T) hin zu 506nm (6T@BNNT) verschiebt. Ursache hierfür ist vermutlich die Bildung von J-Aggregaten im Inneren der Röhren. Die entsprechenden PL-Spektren von freiem 6T und dem Hybridsystem zeigen dabei keine signifikanten Unterschiede. Für konzentrationsabhängige PL-Spektren von 6T@BNNT ergibt sich (anders als bei freiem 6T in DMF) keine Änderung des Verlaufs der Kurven, was als ein Indiz für eine erfolgreiche Einkapselung gedeutet werden kann. Durch Kombination von Rasterkraft- und PL-Mikroskopie konnten die Außendurchmesser von einzelnen 6T@BNNT Objekten ermittelt und in direkten Zusammenhang mit deren photophysikalischen Eigenschaften gebracht werden. Bei einer Analyse der Polarisation des Emissionslichtes von 6T@BNNT in Abhängigkeit des Außendurchmessers ließ sich jedoch keine klare Korrelation zwischen Struktur und Emissionscharakteristiken erkennen. Diese Beobachtung lässt sich vermutlich dadurch erklären, dass mit Hilfe der Rasterkraftmikroskopie lediglich der Außendurchmesser der (teils mehrwandigen) BNNTs bestimmt werden kann. Die entscheidende Größe an dieser Stelle ist allerdings der innere Durchmesser der BNNTs, welcher die Ausrichtung und damit auch die Polarisation der Farbstoffmoleküle beeinflusst. Ein Vergleich des mittleren maximalen Polarisationsgrades der jeweiligen Hybridsysteme hat gezeigt, dass 4T@BNNT den geringsten und 6T@BNNT mit den höchsten Wert aufweist. Dies bestätigt die Annahme, dass mit zunehmender Moleküllänge die Polarisation, aufgrund des höheren Templat-Effektes der Röhre, zunimmt. 8T@BNNT liegt zwischen den beiden anderen Werten, was dieser Annahme widerspricht. Der mittlere Verkippungswinkel der eingekapselten Farbstoffmoleküle gegenüber der Röhrenachse liegt für 4T@BNNT bei etwa 16° und ist damit etwas größer als derjenige von 6T@BNNT. Somit zeigt sich auch hier, dass kürzere Moleküle mehr sterische Freiheitsgerade im Innern der Röhren besitzen. Für 8T@BNNT liegt der Winkel bei ca. 28° und widerspricht abermals der Annahme. TCSPC-Messungen an freien Oligothiophen-Farbstoffen sowie an den hybriden Systemen zeigten, dass die Fluoreszenzlebensdauer \(\tau\) für 4T und 6T (jeweils in DMF) infolge der Einkapselung deutlich zunimmt wenn die Hybridsysteme ebenfalls in DMF dispergiert sind. Die ermittelten Werte für \(\tau\) der separierten Nanoobjekte lagen für 4T@BNNT und 6T@BNNT unterhalb der entsprechenden in DMF. Für 8T bzw. 8T@BNNT ergab sich eine deutlich kürzerer Lebensdauer der separierten Nanoobjekte im Vergleich zum freien Farbstoff in kolloidaler Suspension. Ein erster Ansatz, um den zugrundeliegende Mechanismus aufzuklären, bestand darin, die TCSPC-Spektren (für 6T in DMF und 6T@BNNT in DMF) hinsichtlich der einzelnen Zerfallskanäle zu analysieren. Die erhaltenen Ergebnisse deuteten darauf hin, dass bei freiem 6T in DMF andere Zerfallskanäle dominieren als beim Hybridsystem 6T@BNNT (in DMF). Eine Korrelation der Fluorezenslebensdauer von 6T@BNNT vom äußeren Durchmesser der Nanoröhren zeigte keinen eindeutigen Zusammenhang. Die Charakterisierung von Nilrot bzw. NR@BNNT (analog zu den Oligothiophenen) erfolgte in Kapitel 4. Auch hier zeigte sich eine Verschiebung des PL-Spektrums des Fluorophores durch die Einkapselung in die BNNTs. Allerdings ist das PL-Spektrum des Hybridsystems (NR@BNNT) um etwa 20nm hypsochrom verschoben. Nilrot ist in der Literatur zudem als Nanosonde zur Ermittlung der Permittivität des Lösemittels bzw. der Umgebung bekannt. Dies erlaubte eine Abschätzung der relativen Permittivät im Inneren der BNNTs. Der ermittelte Wert von ca. 4 für ein isoliertes NR@BNNT Objekt deutet auf eine relativ unpolare Umgebung im Röhreninneren hin. Zum Vergleich dazu, liegt der Wert von freiem NR in DMF bei 47, was die relativ hohe Polarität von DMF bestätigt. Der ermittelte Wert für die mittlere maximale Polarisation lag leicht über dem der hybriden Systeme aus Oligothiophenen und Nanoröhren. Für die Auslenkung der NR-Moleküle gegenüber der Röhrenachse ergab sich ein Winkel von etwa 16°, was im Bereich der Werte von 4T@BNNT und 6T@BNNT liegt. Die Messung der zeitaufgelösten Fluoreszenz von freiem und eingekapseltem Nilrot hat ergeben, dass auch in diesem Fall eine Verkürzung der Lebensdauer (von 4091 ps auf 812 ps) erfolgte. Eine solche Verkürzung der Lebensdauer von Chromophoren wird in der Literatur unter anderem mit der Bildung von J-Aggregaten in Zusammenhang gebracht. / This dissertation investigated how the encapsulation of organic dye molecules in boron nitride nanotubes (BNNTs) influences the photophysical properties of the fluorophores. The dyes chosen were alpha-quaterthiophene (4T), alpha-sexithiophene (6T), alpha-octithiophene (8T) and Nile red (NR). The BNNTs used have a nominal diameter of \(5 \pm 2\)nm. To characterize the pure dyes and the hybrid systems consisting of dye and nanotube, a laboratory setup was used that enables PL microscopy in addition to absorption and photoluminescence (PL) spectroscopy. In addition, a time-resolved study of PL (time correlated single photon counting, TCSPC) can be implemented in the ensemble and on individual, separated nano-objects (BNNTs filled with dye). In Chapter 5, the free dyes in solution were first characterized. It has been shown that both 4T and NR are soluble in the solvent used, dimethylformamide (DMF), whereas 6T and 8T show lower solubility. The different profiles of the concentration-dependent PL spectra for 4T and 6T in DMF can probably be attributed to this difference in solubility. In addition, extinction coefficients for 4T and NR were determined using concentration-dependent absorption spectra and there was good agreement with the literature. For 6T and 8T, a determination was not possible due to the low solubility, which is why literature values ​​were used or extrapolated (8T). Chapter 6 detailed the characterization of the BNNTs filled with oligothiophenes. The filling was essentially carried out according to a method published by C. Allard and transferred to the additional fluorophores 4T, 8T and NR. For measurements using UV-Vis spectroscopy in solution or dispersion, it has been shown that the absorption maximum for the dye 6T shifts from 407nm (free 6T) to 506nm (6T@BNNT). The reason for this is probably the formation of J-aggregates inside the tubes. The corresponding PL spectra of free 6T and the hybrid system show no significant differences. For concentration-dependent PL spectra of 6T@BNNT (unlike free 6T in DMF), there is no change in the shape of the curves, which can be interpreted as an indication of successful encapsulation. By combining atomic force and PL microscopy, the outer diameters of individual 6T@BNNT objects could be determined and directly related to their photophysical properties. However, when analyzing the polarization of the emission light from 6T@BNNT depending on the outer diameter, no clear correlation between structure and emission characteristics could be seen. This observation can probably be explained by the fact that only the outer diameter of the (some multi-walled) BNNTs can be determined using atomic force microscopy. The crucial size at this point, however, is the inner diameter of the BNNTs, which influences the alignment and thus also the polarization of the dye molecules. A comparison of the average maximum degree of polarization of the respective hybrid systems showed that 4T@BNNT has the lowest value and 6T@BNNT has the highest value. This confirms the assumption that as the molecule length increases, the polarization increases due to the higher template effect of the tube. 8T@BNNT lies between the other two values, which contradicts this assumption. The average tilt angle of the encapsulated dye molecules relative to the tube axis is about 16° for 4T@BNNT and is therefore slightly larger than that of 6T@BNNT. This also shows that shorter molecules have more steric freedom inside the tubes. For 8T@BNNT the angle is approximately 28° and again contradicts the assumption. TCSPC measurements on free oligothiophene dyes and on the hybrid systems showed that the fluorescence lifetime \(\tau\) for 4T and 6T (each in DMF) increases significantly as a result of encapsulation when the hybrid systems are also dispersed in DMF. The determined values ​​for \(\tau\) of the separated nanoobjects for 4T@BNNT and 6T@BNNT were below the corresponding ones in DMF. For 8T or 8T@BNNT, the lifespan of the separated nanoobjects was significantly shorter compared to the free dye in colloidal suspension. A first approach to elucidate the underlying mechanism was to analyze the TCSPC spectra (for 6T in DMF and 6T@BNNT in DMF) with respect to the individual decay channels. The results obtained indicated that different decay channels dominate for free 6T in DMF than for the hybrid system 6T@BNNT (in DMF). Correlating the fluorescence lifetime of 6T@BNNT with the outer diameter of the nanotubes showed no clear relationship. The characterization of Nile red or NR@BNNT (analogous to the oligothiophenes) took place in Chapter 4. Here, too, there was a shift in the PL spectrum of the fluorophore due to the encapsulation in the BNNTs. However, the PL spectrum of the hybrid system (NR@BNNT) is hypsochromically shifted by about 20 nm. Nile red is also known in the literature as a nanoprobe for determining the permittivity of the solvent or the environment. This allowed an estimation of the relative permittivity inside the BNNTs. The determined value of approx. 4 for an isolated NR@BNNT object indicates a relatively non-polar environment inside the tube. For comparison, the value of free NR in DMF is 47, confirming the relatively high polarity of DMF. The value determined for the average maximum polarization was slightly higher than that of the hybrid systems made of oligothiophenes and nanotubes. The deflection of the NR molecules relative to the tube axis resulted in an angle of approximately 16°, which is in the range of the values ​​for 4T@BNNT and 6T@BNNT. The measurement of the time-resolved fluorescence of free and encapsulated Nile Red showed that in this case too there was a shortening of the lifespan (from 4091 ps to 812 ps). In the literature, such a shortening of the lifespan of chromophores is associated, among other things, with the formation of J-aggregates.
36

Biologische Referenzstrukturen und Protokolloptimierung in der hochauflösenden Fluoreszenzmikroskopie mit dSTORM / Biological model structures and optimization of protocols in super-resolution fluorescence microscopy with dSTORM

Löschberger, Anna January 2014 (has links) (PDF)
Die Lokalisationsmikroskopie ist eine neue, vielversprechende Methode der hochauflösenden Fluoreszenzmikroskopie. Sie ermöglicht detaillierte Einblicke in die Organisation und den strukturellen Aufbau von Zellen. Da die Vorbereitung der Proben und das Aufnehmen der Bilder im Vergleich zu herkömmlichen Methoden höhere Anforderungen stellt, mussten ihr Potential und ihre Zuverlässigkeit erst noch überzeugend gezeigt werden. Bis vor kurzem wurde das Auflösungsvermögen vor allem an Mikrotubuli gezeigt, deren filamentöse Struktur allerdings schon in konfokalen Bildern zu erkennen ist. Deswegen wurde in dieser Dissertation der Kernporenkomplex (NPC), dessen Struktur in der konventionellen Fluoreszenzmikroskopie nicht auflösbar ist, als Modellstruktur für die hochauflösende Fluoreszenzmikroskopie eingeführt. Dazu wurden Kernporenkomplexe aus Kernhüllen von Xenopus laevis Oocyten mit dSTORM (direct stochastic optical reconstruction microscopy), einer Methode der Lokalisationsmikroskopie, hochaufgelöst. Damit konnte nun erstmals die Achtfachsymmetrie dieses Proteinkomplexes lichtmikroskopisch dargestellt werden. Desweiteren konnte der Zentralkanal mit einem Durchmesser von ca. 40 nm aufgelöst werden. Die Daten eigneten sich außerdem für eine automatisierte Bildanalyse nach dem sogenannten "particle averaging" - einer aus der Elektronenmikroskopie bekannten Methode, um eine Durchschnittsstruktur zu ermitteln. Darüber hinaus wurden Zweifach-Färbungen von NPCs benutzt, um verschiedene Ansätze für Zweifarben-Aufnahmen mit dSTORM zu testen. Neben dem mittlerweile standardmäßig benutzten, sequentiellen Ansatz mit zwei spektral getrennten Farbstoffen, wurde auch ein simultaner Ansatz mit zwei spektral überlappenden Farbstoffen erfolgreich angewandt. Auch für 3D-Messungen mit den Ansätzen Biplane und Astigmatismus eignete sich die Markierung der Kernhülle. Hier wurden jedoch A6-Zellen benutzt und die Krümmung des Zellkerns über die gefärbten Kernporen dargestellt. dSTORM-Messungen können nicht nur an fixierten, sondern auch in lebenden Zellen durchgeführt werden. Hierzu eignen sich vor allem sehr immobile Proteine, wie H2B oder Lamin C. Anhand von SNAP-Tag- und Halo-Tag-Konstrukten konnte gezeigt werden, dass sich kommerziell erhältliche, organische Farbstoffe auch in endogener zellulärer Umgebung schalten lassen, wodurch Lebendzell-Aufnahmen mit dSTORM möglich sind. Ein weiterer Teil dieser Arbeit befasst sich mit korrelativen Aufnahmen aus dSTORM und Rasterelektronenmikroskopie (SEM). Hierzu wurden Xenopus laevis Kernhüllen zuerst mit dSTORM hochaufgelöst und danach für die EM präpariert. Anschließend wurden zugehörige Bereiche am Rasterelektronenmikroskop aufgenommen. Mit den erhaltenen korrelativen Bildern konnte gezeigt werden, dass sich dSTORM und SEM bei geeigneten Proben durchaus kombinieren lassen. Proteine können somit spezifisch markiert und im Rahmen ihrer strukturellen Umgebung mit nahezu molekularer Auflösung dargestellt werden. Da hochwertige Aufnahmen eine ausgereifte Probenpräparation voraussetzen, darf deren Etablierung nicht zu kurz kommen. Unter dieser Prämisse wurde ein optimiertes Markierungsprotokoll mit dem Namen ClickOx entwickelt. Mit ClickOx bleibt bei der kupferkatalysierten Azid-Alkin-Cycloaddition die Feinstruktur von Aktinfilamenten, sowie die Fluoreszenz fluoreszierender Proteine, deutlich sichtbar erhalten. Während bei den klassischen Click-Protokollen auf Grund der Entstehung von reaktiven Sauerstoff-Spezies (ROS) feine zelluläre Strukturen, wie Aktinfilamente, angegriffen oder zerstört werden, schützt das neue Protokoll mit enzymatischem Sauerstoffentzug Proteine und somit Strukturen vor Reaktionen mit ROS. Das unterstreicht, wie wichtig es ist auch sogenannte "etablierte" Protokolle weiterzuentwickeln, denn bestimmte Nebeneffekte in Präparationen werden unter Umständen erstmals in der Hochauflösung sichtbar. Ein weiterer Aspekt war die Untersuchung des Einflusses von D1 auf die Chromatinorganisation. Mit verschiedenen mikroskopischen Methoden konnten Hinweise auf eine mögliche DNA-Cross-Linking-Fähigkeit dieses Proteins gesammelt werden. Hier wurde die Einzelmolekülinformation der dSTORM-Filme genutzt, um unterschiedliche Grade von DNA- bzw. Chromatin-Akkumulation zu vergleichen. Die Ergebnisse deuten darauf hin, dass wildtypisches D1 DNA vernetzen kann. Dies erfolgt über die sogenannten AT-Haken-Motive. Sobald diese alle durch Mutation funktionsunfähig gemacht werden - wie bei der verwendeten R10xG-Mutante - lässt sich keine Akkumulation der DNA mehr beobachten. Neben der Chromatinaggregation durch D1-Expression konnte in FRAP-Experimenten gezeigt werden, dass nur die "echten" AT-Haken eine hohe Affinität zum Chromatin aufweisen, die sogenannten "potentiellen" hingegen nicht. / Localization microscopy is a new and promising imaging technique, which provides detailed insights into cellular organization and structural composition of cells with high spatial resolution. Due to the challenging preparation of samples and demanding imaging procedure, its potential and reliability had to be proven. Until recently the resolution has been shown mainly on microtubules, whose structure is already visible in confocal images. This thesis introduced the nuclear pore complex (NPC) as a more demanding model structure for super-resolution fluorescence microscopy as the structure of NPCs can not be resolved with conventional fluorescence microscopy. For this purpose nuclear envelopes of Xenopus laevis oocytes were highly resolved with dSTORM (direct stochastic optical reconstruction microscopy). With this localization microscopy method it was further possible to resolve the eightfold symmetry of nuclear pore complexes with light microscopy for the first time. In addition the central channel could be resolved with a diameter of about 40 nm. Furthermore, the localizations were used for single particle averaging, a well known image analysis method from electron microscopy, to calculate an average structure. Double staining of NPCs was used to check the potential of two-color imaging with dSTORM. Beside the common way of sequential imaging with two clearly spectrally separated dyes, a spectral demixing approach with spectrally overlapping dyes was applied. Labeling the nuclear envelope was also suitable for 3D measurements using two different approaches, i.e. biplane and astigmatism. In this case, labeled NPCs of Xenopus laevis A6-cells were used to illustrate the bending of the nucleus. dSTORM can be applied not only in fixed but also in living cells. Immobile proteins such as H2B or lamin C are especially suitable for this approach. Using fusion proteins with SNAP-Tag or Halo-Tag, it was shown that photoswitching of commercially available organic dyes is possible in an endogenous cellular environment and thus enabeling dSTORM in living cells. Another aspect of this work covers correlative microscopy using dSTORM and scanning electron microscopy (SEM). Therefor nuclear envelopes of Xenopus laevis were first imaged with dSTORM and then prepared for SEM. After that, corresponding areas were imaged with SEM. The resulting correlative images showed clearly that - assuming one has appropriate samples - dSTORM and SEM can be fairly combined. This way specifically labeled proteins can be imaged with nearly molecular resolution in the context of their structural environment. Since the quality of localization microscopy strongly depends on sample preparation, ongoing developments of labeling protocols are required. On this premise an optimized labeling protocol called ClickOx was developed. ClickOx clearly preserves the fine structure of actin filaments and the fluorescence of fluorescent proteins when using copper-catalyzed azide-alkine-cycloaddition. Whereas fine cellular structures such as actin filaments are affected by reactive oxygen species (ROS) under standard clicking procedures, the new protocol, which contains an enzymatic oxygen scavenger, protects proteins and thus cellular structures from reactions with ROS. This demonstrates the importance of further developing even so called "well established" protocols, because some side effects may appear only in super-resolution. Another aspect adressed the influence of D1 on chromatin organization. Hints for a possible DNA cross-linking ability of D1 were collected using different microscopic approaches. The single-molecule information of dSTORM measurements was used to analyse chromatin aggregation induced by D1 expression. The results indicate that wildtype D1 can cross-link DNA with its AT-hooks. Consequently the loss-of-function mutant R10xG is unable to aggregate chromatin. Furthermore FRAP experiments were performed to demonstrate that only "true" AT-hooks in D1 have a strong affinity to chromatin, but not the so called "potential" AT-hooks.
37

Entwicklung eines experimentellen Aufbaus zur Charakterisierung nanoskaliger Systeme mittels Fluoreszenzspektroskopie und -mikroskopie / Development of an experimental setup for characterizing nanoscopic matter by means of fluorescence spectroscopy and fluorescence microscopy

Hain, Tilman Christian January 2015 (has links) (PDF)
Die vorliegende Dissertation leistet einen Beitrag zur spektroskopischen Messmethodik nanoskaliger Strukturen. Im Mittelpunkt der Arbeit steht die Entwicklung und Erprobung eines spektrofluorimetrischen Aufbaus, mit dessen Hilfe ein aus Kohlenstoffnanoröhren und DNA-Oligomeren bestehendes supramolekulares Modellsystem einer optischen Untersuchung zugänglich gemacht wird. Die Vielseitigkeit der Messeinheit aus Mikroskop und Spektrometer wird an einer weiteren Substanzklasse untermauert. So wird das Emissionsverhalten von in Siliziumcarbidkristallen induzierten Defektzentren einer räumlich, spektral und zeitlich aufgelösten Charakterisierung unterzogen. Die zentrale Komponente des Spektrofluorimetrieaufbaus stellt eine Superkontinuumlichtquelle dar. In Verbindung mit einem elektronisch geregelten Filtermodul zur Wellenlängenselektion erlaubt sie die Durchführung von Photolumineszenz-Anregungsexperimenten. Im Gegensatz zu kommerziell erhältlichen Systemen, die überwiegend auf eine spektroskopische Charakterisierung gelöster oder kolloidal stabilisierter Substanzen abzielen, erlaubt der hier realisierte Aufbau auch die PL- mikroskopische Untersuchung kondensierter Proben, was durch die Epi-Bauweise auch opake Substrate einschließt. Der Einsatz von InGaAs-Sensoren weitet das Detektionsfenster auf den Nahinfrarotbereich aus, sowohl hinsichtlich des Kamera- als auch des Spektroskopiekanals. Anhand verschiedenartiger Kohlenstoffnanorohrproben, die entweder in flüssiger Phase dispergiert oder in festem Zustand als Film abgeschieden vorliegen, wird die Leistungsfähigkeit des PLE-Experiments unter Beweis gestellt. Neben der Zuordnung der Chiralitäten in polydispersen SWNT-Suspensionen wird dies auch durch die Untersuchung von Energietransferprozessen und die Studie von Umgebungseinflüssen demonstriert. Die Charakterisierung des DNA-SWNT-Modellsystems in mikrofluidischer Umgebung macht von der fluoreszenzmikroskopischen Detektionseinheit Gebrauch. Während die intrinsische Photolumineszenz der Nanoröhren sicherstellen soll, dass Letztere in ausreichender Anzahl auf den mikrostrukturierten Substraten vorhanden sind, wird die extrinsische Photolumineszenz der funktionalisierten Oligonukleotide als spektroskopisches Maß für die DNA-Konzentration herangezogen. Das hierbei beobachtete Agglomerationsverhalten der farbstoffmarkierten Oligomere geht mit einer lokal erhöhten Fluoreszenzintensität einher und erlaubt damit die quantitative Auswertung der auf PL-Einzelbildern basierenden Zeitserien. Zugleich wird damit eine Abschätzung der DNA-Belegung auf den Nanoröhren möglich. Im Falle der aus 16 alternierenden Guanin-Thymin-Einheiten bestehenden Basensequenz lösen sich nach Initiieren des Desorptionsvorgangs ein Großteil der Oligomere von der Nanorohroberfläche ab. Lediglich ein Fünftel bleibt in adsorbierter Form zurück, was sich jedoch für die Hybridstabilität als ausreichend erweist. Die Freisetzung weiterer Oligomere bleibt bei der Versuchstemperatur von 20 °C trotz der hohen Verdünnung aus, da aufgrund des größeren Interadsorbatabstands und der damit verbundenen Abnahme repulsiver Wechselwirkungen die Aktivierungsbarriere für ihre Desorption steigt. Die Stabilität der DNA-SWNT-Konjugate liegt demnach in ihrer kinetischen Inertheit begründet, die sie vor einer Reaggregation bewahrt. Die Studie der in Siliziumcarbid induzierten Fehlstellendefekte kann als Beleg für die breite Anwendbarkeit des spektrofluorimetrischen Aufbaus gelten. PL-Mikroskopaufnahmen zeigen hierbei, dass die Anzahl der Defektzentren mit der Bestrahlungsintensität kontrolliert werden kann – von einer kontinuierlichen Verteilung bei hohen Strahlungsintensitäten über heterogene Defektansammlungen bis hin zu Einzeldefektstellen bei niedrigen Strahlungsdosen. Letztere resultieren in beugungsbegrenzten Signaturen und erlauben damit eine Charakterisierung des abbildenden Systems sowie des Anregungsfokus. Anhand der PLE-Analyse lässt sich das Absorptionsmaximum abschätzen. Aussagen zur zeitlichen Entwicklung des Emissionsverhaltens werden durch TCSPC-Messungen erhalten. Die abschließende Untersuchung des Photonenflusses mit Hilfe von Korrelationsexperimenten nach Hanbury Brown-Twiss zeigt bei Raumtemperatur kein Auftreten von Photonantibunching. / Within the scope of this dissertation, a contribution towards the spectroscopic investigation of nanomaterials has been made. The approach applied here is a spectrofluorometric one, which allows the optical characterization of an oligonucleotide/single-wall carbon nanotube comprised supramolecular model system. The flexibility of the developed setup is demonstrated by studying another class of nanoscale samples, that is defect centers in silicon carbide crystals. Their emission behavior is subject to a spacial, spectral and temporal analysis. The key role in the combined microscope and spectrograph assembly is held by a supercontinuum light source. With the help of this device, excitation measurements can be conducted by shifting the wavelength with an electronically driven filter accessory. In contrast to commercially available systems, which predominantly focus on a spectroscopic characterization of substances in solution or in colloidal suspension, it is also possible to carry out PL microscopic studies of condensed matter. Because of an epifluorescence configuration, the samples to be measured imply opaque substrates as well. Using complementary sensor materials including InGaAs arrays enlarges the accessible range of emission for both imaging and spectroscopy. Differently processed carbon nanotube samples, occurring in either dispersed or deposited form, serve as a benchmark in assessing the capability of the PLE setup established here. For instance, it can be used to assign chiralities in heterogeneous SWNT suspensions or to analyze energy transfer as well as the impact of varying colloidal conditions. The studies of the DNA-SWNT model system are accomplished through the use of fluorescence microscopy under microfluidic control. The intrinsic photoluminescence of carbon nanotubes can be exploited to estimate, to what extent they cover the lithographically treated silicon wafers. The extrinsic photoluminescence of functionalized oligonucleotides is used as a spectroscopic probe for DNA concentration measurements. Bright spots with distinct shape are observed and attributed to an agglomeration of dye-labeled oligomers. By recording time series of PL images, the locally enhanced emission signal in these discrete sites can be quantitatively analyzed, representing the progress of DNA adsorption on SWNTs. Based on a DNA sequence consisting of 16 alternating guanine-thymine moieties, the present experiments reveal the release of most of the oligonucleotides, when starting off the desorption process. Only one fifth of the initially adsorbed amount remains attached to the nanotube surface, without the modified environment affecting hybrid stability. Remarkably, an ongoing desorption does not take place at the test temperature of 20 °C in spite of the vast dilution applied. This circumstance can be explained by an increased distance between the residually adsorbed oligonucleotides, resulting in less pronounced repulsive forces between them. Consequently, the activation energy barrier for inducing further detachment is raised. In case of sufficiently long base compositions, this suggests that the stability of conjugates is founded in their kinetic inertness. The absence of continued desorption eventually prevents these DNA-SWNT hybrids from reaggregating. The investigation of vacancy defects in silicon carbide proves the broad applicability of the spectrofluorimetric setup. PL microscopic studies show that the amount of defect sites can be controlled by tuning electron irradiance. The corresponding defect pattern evolves from a continuous distribution towards discrete clusters. By lowering the exposure dose even more, single defects emerge showing diffraction-limited signatures, which can help to elucidate the imaging system as well as the excitation focus in more detail. PLE mapping and time-correlated single photon counting of the fluorescence decay provide insight in photophysical parameters, including the absorption maxium and the lifetime of the excited state. Studying the photon flux by means of correlation measurements according to Hanbury Brown-Twiss does not give rise to photon antibunching under ambient conditions.
38

Structural and functional analysis of the trypanosomal variant surface glycoprotein using x-ray scattering techniques and fluorescence microscopy / Strukturelle und funktionale Analyse des variablen Oberflächenproteins von Trypanosoma brucei mithilfe vön Röntgenstreutechniken und Fluoreszenzmikroskopie

Bartossek, Thomas January 2018 (has links) (PDF)
Trypanosoma brucei is an obligate parasite and causative agent of severe diseases affecting humans and livestock. The protist lives extracellularly in the bloodstream of the mammalian host, where it is prone to attacks by the host immune system. As a sophisticated means of defence against the immune response, the parasite’s surface is coated in a dense layer of the variant surface glycoprotein (VSG), that reduces identification of invariant epitopes on the cell surface by the immune system to levels that prevent host immunity. The VSG has to form a coat that is both dense and mobile, to shield invariant surface proteins from detection and to allow quick recycling of the protective coat during immune evasion. This coat effectively protects the parasite from the harsh environment that is the mammalian bloodstream and leads to a persistent parasitemia if the infection remains untreated. The available treatment against African Trypanosomiasis involves the use of drugs that are themselves severely toxic and that can lead to the death of the patient. Most of the drugs used as treatment were developed in the early-to-mid 20th century, and while developments continue, they still represent the best medical means to fight the parasite. The discovery of a fluorescent VSG gave rise to speculations about a potential interaction between the VSG coat and components of the surrounding medium, that could also lead to a new approach in the treatment of African Trypanosomiasis that involves the VSG coat. The initially observed fluorescence signal was specific for a combination of a VSG called VSG’Y’ and the triphenylmethane (TPM) dye phenol red. Exchanging this TPM to a bromo-derivative led to the observation of another fluorescence effect termed trypanicidal effect which killed the parasite independent of the expressed VSG and suggests a structurally conserved feature between VSGs that could function as a specific drug target against T. b. brucei. The work of this thesis aims to identify the mechanisms that govern the unique VSG’Y’ fluorescence and the trypanocidal effect. Fluorescence experiments and protein mutagenesis of VSG’Y’ as well as crystallographic trials with a range of different VSGs were utilized in the endeavour to identify the binding mechanisms between TPM compounds and VSGs, to find potentially conserved structural features between VSGs and to identify the working mechanisms of VSG fluorescence and the trypanocidal effect. These trials have the potential to lead to the formulation of highly specific drugs that target the parasites VSG coat. During the crystallographic trials of this thesis, the complete structure of a VSG was solved experimentally for the first time. This complete structure is a key component in furthering the understanding of the mechanisms governing VSG coat formation. X-ray scattering techniques, involving x-ray crystallography and small angle x-ray scattering were applied to elucidate the first complete VSG structures, which reveal high flexibility of the protein and supplies insight into the importance of this flexibility in the formation of a densely packed but highly mobile surface coat. / Trypanosoma brucei ist ein eukaryotischer Parasit welcher bei Menschen und Nutztieren schwere Krankheiten auslöst. Der Protist lebt extrazellulär im Blutstrom seines Säugetier-Wirtes, in welchem er unter konstantem Angriff durch das Wirts-Immunsystem steht. Als ausgeklügelte Methode zur Umgehung der Immunantwort besitzt der Parasit einen dichten Oberflächenmantel des variablen Oberflächen-Glycoproteins (VSG), welcher die Identifikation invariabler Oberflächenproteine durch das Immunsystem erschwert und Wirts-Immunität gegen den Parasiten verhindert. Der gebildete VSG-Mantel muss gleichzeitig eine hohe Dichte besitzt, um invariable Oberflächenproteine vor Immundetektion zu beschützen, und eine hohe Mobilität aufweisen, um ein schnelles Recycling des Schutzmantels während Immunantworten zu gewährleisten. Dieser Mantel schützt den Parasiten effektiv vor dem Wirts-Immunsystem und führt bei fehlender Behandlung des Patienten zur persistenten Parasitemie durch Trypanosoma brucei. Die verfügbaren Behandlung gegen die Afrikanische Trypanosomiasis beinhaltet die Benutzung von Medikamenten welche ihrerseits z.T. stark toxisch sind und den Tod des Patienten verursachen können. Ein Großteil der verfügbaren Medikamente wurden zu Beginn des letzten Jahrhunderts entwickelt und stellen trotz anhaltenden Entwicklungen noch immer die beste Lösung im Kampf gegen den Parasiten dar. Die Entdeckung eines fluoreszierenden VSGs deutete auf eine Interaktionen zwischen dem VSG Mantel und Bestandteilen des umgebenden Medium hin, welche die Entwicklung von Medikamenten mit dem VSG Mantel als Drug Target ermöglichen könnte. Das ursprünglich beobachtete Fluoreszenz-Signal war spezifisch für eine Kombination eines VSG namens VSG’Y’ und dem Triphenylmethan (TPM) Phenolrot. Der Austausch von Phenolrot gegen ein Brom-Derivat führte zur Beobachtung eines weiteren Fluoreszenz-Effekts, welcher unabhängig vom exprimierten VSG auftritt und letal für den Parasiten ist. Dieser so genannten Trypanozide Effekt lässt auf konservierte Strukturen schließen, welche von allen VSGs geteilt werden und als hochspezifisches Drug Target gegen T. b. brucei fungieren könnten. Das Ziel der vorliegenden Arbeit war es, die Mechanismen zu identifizieren, welche die einzigartige VSG’Y’-Fluoreszenz und den Trypanoziden Effekt auslösen. Fluoreszenz-Experimente und Protein-Mutagenese von VSG’Y’, sowie röntgenkristallographische Analysen mit mehreren unterschiedlichen VSGs wurden in dem Bestreben durchgeführt, die Bindung zwischen VSGs und TPMs zu charakterisieren, potentiell konservierte Strukturen von VSGs zu finden und die Mechanismen der einzigartigen VSG’Y’-Fluoreszenz und des Trypanoziden Effekts zu identifizieren. Diese Arbeiten haben das Potenzial die Formulierung hochspezifischer Medikamente mit VSGs als Drug Target anzutreiben. Im Rahmen der kristallographischen Analysen wurden die ersten vollständigen VSG Strukturen ermittelt, welche eine hohe Bedeutung für das Verständnis über die Bildung des VSG-Mantels haben. Die VSG Strukturen wurden u.a. per Röntgenkristallographie und Kleinwinkel-Röntgenstreuung aufgeschlüsselt und zeigten dass VSGs ein hohes Maß an Flexibilität besitzen. Diese Flexibilität ist wichtig für die Bildung eines dichten und hochmobilen VSG-Mantels.
39

Untersuchung von Sphingolipiden und anderen Membrankonjugaten mittels hochauflösender Fluoreszenzmikroskopie / Analysis of sphingolipids and other membrane conjugates with super-resolution fluorescence microscopy

Burgert, Anne January 2018 (has links) (PDF)
Methoden der Fluoreszenz-Lokalisationsmikroskopie (engl. single-molecule localization microscopy, SMLM) ermöglichen es Moleküle zu quantifizieren und deren Verteilung zu analysieren. Im Rahmen dieser Arbeit wurden verschiedene Membranmoleküle auf unterschiedlichen eukaryotischen Zellen, aber auch auf Prokaryoten mit dSTORM (engl. direct stochastic optical reconstruction microscopy) oder PALM (engl.: photoactivated localization microscopy) aufgenommen und quantifiziert. Bevor jedoch diese hochauflösende fluoreszenzbasierte Technik für biologische Fragestellungen angewendet werden konnten, mussten zunächst potentielle Artefakt-auslösende Quellen identifiziert und Strategien gefunden werden, um diese zu eliminieren. Eine mögliche Artefakt-Quelle ist eine zu niedrige Photonenzahl, die von Fluorophoren emittiert wird. Werden zu wenige Photonen detektiert, kann die Lokalisation eines Fluorophors weniger präzise bestimmt werden. Dies kann zu einer falschen Abbildung von Strukturen führen oder zu falschen Rückschlüssen über die Verteilung von Molekülen. Eine Möglichkeit die Anzahl der emittierten Photonen zu erhöhen, ist chemische Additive als Triplettlöscher einzusetzen. Sie bewirken, dass die Fluorophore wieder in den Grundzustand relaxieren und somit wieder angeregt werden können. Es wurden verschiedene Additive, die in der Literatur als Triplettlöscher beschrieben sind, getestet. Dazu wurden zunächst ihre Auswirkungen auf den Triplettzustand verschiedener Fluorophore (Alexa Fluor (Al) 488, 532 und 647 und Atto655) mit Hilfe von Fluoreszenzkorrelationsspektroskopie (FCS) untersucht. Cyclooctatetraen (COT) bewirkte dabei eine Abnahme der Triplettausbeute von Al488, Al532 und Al647 um ~ 40-60%, bei Atto655 veränderte sie sich nicht. Obwohl die Ergebnisse der FCS-Messungen darauf hindeuten, dass COT in einer erhöhten Anzahl an emittierten Photonen resultiert, konnte dies bei dSTORM-Messungen nicht bestätigt werden. Hier hatte COT nur einen größeren positiven Effekt auf das Fluorophor Al647 (Zunahme um ~ 60%). Eine Erklärung für diese Widersprüchlichkeit zu den Ergebnissen aus den FCS-Messungen, könnte das Vorhandensein des Schaltpuffers bei dSTORM-Messungen sein. Dieser bewirkt den Übergang der Fluorophore in den Aus-Zustand bzw. entzieht dem Puffer Sauerstoff. Bei der Zugabe von 5 mM Kaliumiodid (KI) nahm die Triplettamplitude bei FCS-Messungen nur bei Al488 ab (um ~ 80%). Eine geringe Steigerung (um ~ 10%) der Intensität von Al488 mit KI konnte bei dSTORM-Messungen mit niedrigen Konzentrationen (~ 0,5 mM) erzielt werden. Bei einer Konzentration von 5 mM sank die Intensität jedoch wieder um 40%. Deuteriumoxid (D2O) soll, anders als die Triplettlöscher, eine Verbesserung der Photonenausbeute dadurch bewirken, dass strahlungslose Relaxationsprozesse minimiert werden. Mit dSTORM-Messungen konnte gezeigt werden, dass Atto655 und Al647 in D2O zwar pro An-Zustand mehr Photonen emittieren als in Schaltpuffer ohne D2O, da die Fluorophore hier jedoch schneller bleichen, letztendlich die gleiche Anzahl an Photonen detektiert werden. Um die Anzahl an emittierten Photonen zu erhöhen, eignet sich also nur COT bei dSTORM-Messungen mit AL647 und KI in sehr geringen Konzentrationen bei Al488. D2O kann eingesetzt werden, wenn eine Probe schnell vermessen werden muss, wie zum Beispiel bei Lebendzellmessungen. Nicht nur eine zu niedrige Photonenzahl, auch eine zu geringe Photoschaltrate kann Artefakte bei dSTORM-Messungen erzeugen. Dies wurde anhand von verschiedenen biologischen Strukturen, die mit unterschiedlichen Anregungsintensitäten aufgenommen wurden, deutlich gemacht. Besonders die Aufnahmen von Plasmamembranen sind anfällig für die Generierung von Artefakten. Sie weisen viele inhomogene und lokal dichte Regionen auf. Wenn nun mehr als ein Emitter pro µm² gleichzeitig an ist, erzeugt das Auswertungsprogramm große artifizielle Cluster. Die hier durchgeführten Messungen machen deutlich, wie wichtig es ist, dSTORM-Bilder immer auf mögliche Artefakte hin zu untersuchen, besonders wenn Moleküle quantifiziert werden sollen. Dafür müssen die unbearbeiteten Rohdaten sorgfältig gesichtet werden und notfalls die Messungen mit einer höheren Laserleistung wiederholt werden. Da dSTORM mittlerweile immer mehr zur Quantifizierung eingesetzt wird und Clusteranalysen durchgeführt werden, wäre es sinnvoll bei Veröffentlichungen die Rohdaten von entscheidenden Aufnahmen der Öffentlichkeit zur Verfügung zu stellen. Die Färbemethode ist ein weiterer Punkt, durch den Artefakte bei der Abbildung von Molekülen mittels SMLM entstehen können. Häufig werden Antikörper zum Markieren verwendet. Dabei sollte darauf geachtet werden, dass möglichst kleine Antikörper oder Antikörperfragmente verwendet werden, besonders wenn Clusteranalysen durchgeführt werden sollen. Anderenfalls leidet die Auflösung darunter, bzw. erhöht sich die Gefahr der Kreuzvernetzung von Molekülen. Im zweiten Teil der vorliegenden Arbeit, wurden Plasmamembran-Ceramide untersucht. Ceramide gehören zu den Sphingolipiden und regulieren diverse zelluläre Prozesse. Verschiedene Stimuli bewirken eine Aktivierung von Sphingomyelinasen (SMasen), die Ceramide in der Plasmamembran synthetisieren. Steigt die Konzentration von Ceramiden in der Plasmamembran an, kondensieren diese zu Ceramid-reichen Plattformen (CRPs). Bisher ist noch wenig über die Verteilung der Ceramide und die Größe der CRPs bekannt. Sie wurden hier über IgG-Antikörper in der Plasmamembran von Jurkat-, U2OS-, HBME- und primären T-Zellen angefärbt und erstmals mit dSTORM hochaufgelöst, um sie dann zu quantifizieren. Unabhängig von der Zelllinie befanden sich 50% aller Ceramidmoleküle in ~ 75 nm großen CRPs. Im Mittel bestanden die CRPs aus ~ 20 Ceramiden. Mit Hilfe einer Titrationsreihe konnte ausgeschlossen werden, dass diese Cluster nur durch die Antikörper-Färbung artifiziell erzeugt wurden. Bei Inkubation der Zellen mit Bacillus cereus Sphingomyelinase (bSMase) stieg die Gesamtkonzentration der Ceramide in der Plasmamembran an, ebenso wie die Ceramidanzahl innerhalb der CRPs, außerdem die Anzahl und Größe der CRPs. Dies könnte zu einer Veränderung der Löslichkeit von Membrankomponenten führen, was wiederum eine Akkumulation bestimmter Rezeptoren oder eine Kompartimentierung bestimmter Proteine erleichtern könnte. Die Anhäufung der Ceramide in den CRPs könnte ebenfalls die lokale Interaktion mit anderen Membranmolekülen erleichtern und dadurch möglicherweise die Reaktivität von Rezeptoren verändern. Mittels Azid-modifizierten Ceramidanaloga und kupferfreier Click-Chemie wurden Plasmamembran-Ceramide auch in lebenden Jurkat-Zellen mit Hilfe konfokaler Laser-Raster-Mikroskopie (CLSM, engl. confocal laser scanning microscopy) und Strukturierter Beleuchtungsmikroskopie (SIM, engl. structured illumination microscopy) untersucht. Dabei konnte gezeigt werden, dass die Fettsäure-Kettenlänge und die Position des Azids bei den Ceramidanaloga eine entscheidende Rolle spielt, wie hoch das detektierte Signal in der Plasmamembran letztendlich ist. Die Versuche machen auch deutlich, dass die klickbaren Ceramidanaloga lebendzellkompatibel sind, sodass sie eine hervorragende Möglichkeit darstellen, zelluläre Reaktionen zu verfolgen. Es wurden hier nicht nur Ceramide in eukaryotischen Zellen analysiert, sondern auch in Bakterien. Neisseria meningitidis (N. meningitidis) sind gramnegative Bakterien, die im Menschen eine Sepsis oder eine Meningitis auslösen können. Es wurde mittels immunhistochemischen Färbungen mit dem anti-Ceramid IgG-Antikörper, aber auch mit den klickbaren Ceramidanaloga, ein Signal in der Membran erhalten, was mit dSTORM hochaufgelöst wurde. In anderen Bakterien wurden ebenfalls schon Sphingolipide nachgewiesen. Studien zu Ceramiden in N. meningitidis wurden bisher jedoch noch nicht veröffentlicht. Im Rahmen dieser Arbeit konnten erstmals Ergebnisse erhalten werden, die darauf hinweisen, dass N. meningitidis ebenfalls Ceramide besitzen könnten. In einem dritten Projekt wurde die Interaktion zwischen NK-Zellen und Aspergillus fumigatus untersucht. Der Schimmelpilz kann eine Invasive Aspergillose in immunsupprimierten Menschen auslösen, was zum Tod führen kann. Verschiedene Studien konnten schon zeigen, dass NK-Zellen eine wichtige Rolle bei der Bekämpfung des Pilzes spielen. Der genaue Mechanismus ist jedoch noch unbekannt. Im Rahmen dieser Arbeit konnte nachgewiesen werden, dass der NK-Zell-Marker CD56 entscheidend für die Pilzerkennung ist. Mit immunhistochemischen Färbungen und LSM-, aber auch dSTORM-Messungen, konnte gezeigt werden, dass die normalerweise homogen verteilten CD56-Rezeptoren auf der Plasmamembran von NK-Zellen aktiv an die Interaktionsstelle zu A. fumigatus transportiert werden. Mit der Zeit akkumulieren hier immer mehr CD56-Proteine, während das Signal in der restlichen Membran immer weiter abnimmt. Es konnte erstmals CD56 als wichtiger Erkennungsrezeptor für A. fumigatus identifiziert werden. In dem letzten bearbeiteten Projekt, wurde die Bindung von Anti-N-Methyl-D-Aspartat (NMDA)-Rezeptor Enzephalitis Autoantikörper an Neuronen untersucht. Bei einer Anti-NMDA-Rezeptor Enzephalitis bilden die Patienten Autoantikörper gegen die NR1-Untereinheit ihrer eigenen postsynaptischen NMDA-Rezeptoren. Da die Krankheit oft sehr spät erkannt wird und die Behandlungsmöglichkeiten noch sehr eingeschränkt sind, führt sie noch oft zum Tod. Sie wurde erst vor wenigen Jahren beschrieben, sodass der genaue Mechanismus noch unbekannt ist. Im Rahmen dieser Arbeit, konnten erste Färbungen mit aufgereinigten Antikörper aus Anti-NMDA-Rezeptor Enzephalitis Patienten an NMDA-Rezeptor-transfizierte HEK-Zellen und hippocampalen Maus-Neuronen durchgeführt und mit dSTORM hochaufgelöst werden. Mit den Messungen der HEK-Zellen konnte bestätigt werden, dass die Autoantikörper an die NR1-Untereinheit der Rezeptoren binden. Es konnten erstmals auch die Bindung der Antikörper an Neuronen hochaufgelöst werden. Dabei wurde sichtbar, dass die Antikörper zum einen dicht gepackt in den Synapsen vorliegen, aber auch dünner verteilt in den extrasynaptischen Regionen. Basierend auf der Ripley’s H-Funktion konnten in den Synapsen große Cluster von ~ 90 nm Durchmesser und im Mittel ~ 500 Lokalisationen und extrasynaptisch kleinere Cluster mit einem durchschnittlichen Durchmesser von ~ 70 nm und ~ 100 Lokalisationen ausgemacht werden. Diese ersten Ergebnisse legen den Grundstein für weitere Messungen, mit denen der Mechanismus der Krankheit untersucht werden kann. / With single molecule localization microscopy (SMLM) quantification of molecules and the analysis of their distribution becomes possible. In this work various plasma membrane molecules of different eukaryotic and prokaryotic cells were imaged with dSTORM (direct stochastic optical reconstruction microscopy) or PALM (photoactivated localization microscopy) and quantified. To use these super-resolution fluorescence microscopy techniques and answer elaborate biological questions, potential sources of artifacts were identified and strategies to circumvent them developed. A possible source of artifacts is an insufficient number of photons emitted by fluorophores. If less photons are detected, determining the localization of one fluorophore is less precise. This can cause a wrong reconstruction of structures or might lead to false conclusions about the distribution of molecules. One possibility to increase the number of photons is to use chemical additives which quench the triplet state of fluorophores. They ensure that the fluorophores relax into the ground state allowing them to become excited again. Different additives, described in literature as triplet quenchers, were tested. The effects of these additives on the triplet state of different fluorophores (Alexa Fluor (Al) 488, 532 und 647 und Atto655) were analyzed with fluorescence correlation spectroscopy (FCS). Cyclooctatetraene (COT) resulted in a decrease of triplet state yield of Al488, Al532 and Al647 by ~ 40-60%, yet the triplet state of Atto655 was unaffected. FCS measurements indicated that COT results in an increased number of emitted photons, but dSTORM measurements could not confirm this finding. Here, COT only revealed a positive effect on the intensity of Al647 (increase by ~ 60%). An explanation for this inconsistency with the FCS results might be the presence of the switching buffer in dSTORM measurements. The buffer is designed to cause a transition of the fluorophores to and stabilize the off-state by removing oxygen from the sample, counteracting the effect of COT. On addition of 5 mM potassium iodide (KI) only Al488 fluorophores showed a decreased triplet state rate (~ 80%) in FCS measurements. This finding was confirmed by dSTORM measurements with low concentrations (~ 0.5 mM) of KI which resulted in a slight intensity increase (~ 10%) of Al488. Higher KI concentration (5 mM) on the other hand showed a reversed effect, resulting in a drop in intensity by ~ 40%. Deuterium oxide (D2O) isn’t a triplet quencher but should minimize non-radiative processes. DSTORM measurements with Atto665 and Al647 revealed, that D2O does not affect the total number of emitted photons per fluorophore. Instead, D2O increased the amount of emitted photons per time. In a nutshell, these results show that dSTORM measurements with Al647 can be improved using COT, and measurements with Al488 by using very low concentrations of KI. If needed, D2O can speed up dSTORM acquisition time considerably, e.g. for life cell measurements. In addition to an insufficient number of collected photons, inappropriate photoswitching rates can induce artifacts in dSTORM measurements as well. This was shown using various biological reference structures. Especially the imaging of plasma membranes is prone to generate artifacts. Plasma membranes exhibit a lot of intrinsically three-dimensional structures with high local emitter densities. In these regions of higher fluorophore densities the likelihood of two close fluorophores emitting at the same time is increased. This in turn can result in large artificial clusters due to misinterpretation by the reconstruction software. Taken together, the performed experiments show how important it is to prove dSTORM images and minimize possibility image artifacts. Thus, raw data movies need to be examined carefully and, if necessary, measurements must be repeated with adapted imaging conditions. Since dSTORM is increasingly used for quantification and cluster analysis it is recommended to publish raw data in the Supporting information of the manuscript. Another source of artifacts when imaging molecules with SMLM is the staining procedure. Usually antibodies are used to label biological structures for dSTORM. In the interest of resolution, small antibodies or just fragments of antibodies should be used, especially if cluster analysis is performed. Otherwise reduced resolution or an increase in cross-linking of molecules might occur. In the second part of this study plasma membrane ceramides were investigated. Sphingolipid ceramides regulate various cellular processes. Different stimuli initiate activation of sphingomyelinases (SMase) which synthesize ceramides at the plasma membrane. A rise in ceramide concentration leads to a condensation of them in ceramide-rich platforms (CRPs). So far, only little is known about the distribution and the size of CRPs. Here, plasma membrane ceramides of Jurkat-, U2OS-, HBME- and primary T-cells were stained with an IgG-antibody, imaged using dSTORM and their distribution quantitatively analyzed. Independent of the analyzed cell line, ~ 50% of all ceramides detected in the plasma membrane formed CRPs with a size of ~ 75 nm. On average one CRP consisted of ~ 20 ceramide molecules. Using a titration series the possibility of artificial cluster generation due to antibody staining was ruled out. Treatment of cells with Bacillus cereus sphingomyelinase (bSMase) increased the overall ceramide concentration in the plasma membrane, the number of ceramides in the CRPs as well as the quantity and the size of CRPs. This might result in a higher solubility of membrane components in CRPs which in turn could facilitate accumulation or compartmentation of certain proteins. Accumulation of ceramides in the CRPs could also enable local interaction with other molecules and possibly change the reactivity of some receptors. To investigate plasma membrane ceramides in living cells azido-modified ceramides and copper-free click chemistry were used for labeling. Imaging was performed using confocal laser-scanning microscopy (LSM) and structured illumination microscopy. It was shown that the length of fatty acid chains and the position of the azido group of ceramide analogues play a decisive role in the magnitude of the detected signal in the plasma membrane. These results demonstrate that azido-functionalized ceramides are live-cell compatible, making them an excellent tool to follow cellular reactions. In this study, ceramides were not only analyzed in eukaryotic cells but in bacteria as well. Neisseria meningitidis (N. meningitidis) are gram-negative bacteria triggering sepsis or meningitis in humans. Using both immunolabeling with anti-ceramide IgG-antibodies and azido-modified ceramides, ceramides were detected for the first time in the membrane of N. meningitidis by dSTORM. Although sphingolipids were reported to exist in various bacterial membranes, studies about ceramides in N. meningitidis have not yet been published. The results obtained here suggest the presence of ceramides in N. meningitidis. The third part of this thesis addresses the interaction between NK cells and Aspergillus fumigatus. The mold can cause invasive aspergillosis in immunocompromised patients which can lead to death. Various studies have already shown that NK cells play a crucial role in the clearance of the fungal infection. Still, the exact mechanism remains unknown. As part of this work the NK cell marker CD56 was identified as a decisive receptor in recognition of the mold. Using LSM and dSTORM measurements in combination with immunocytochemical staining an active transport of the usually homogenous distributed CD56 receptors to the interaction site of NK cells and fungus was detected. Over time CD56 proteins accumulate at these interaction sites while the signal in the rest of the membrane continuously decreases. For the first time this study was able to identify CD56 as an important recognition receptor for A. fumigatus. In the last project binding of anti-N-Methyl-D-aspartate (NMDA) receptor encephalitis autoantibodies were investigated in neurons. Patients with this form of encephalitis generate autoantibodies against the NR1 subunit of their own postsynaptic NMDA receptors. Since NMDA receptor encephalitis is often diagnosed too late and treatment options are limited the disease often proves to be fatal. Anti-NMDA receptor encephalitis was described quite recently, explaining why the exact mechanism remains still unknown. For this study purified antibodies from anti-NMDA receptor encephalitis patients were used to stain NMDA receptor transfected HEK cells and hippocampal mouse neurons. These samples were subsequently imaged with dSTORM and analyzed. Measurements on HEK cells confirmed that the autoantibodies bind to the NR1 subunit. Using dSTORM, the binding sites of these antibodies at the neurons were imaged for the first time with super-resolution microscopy. The receptors are densely localized in synapses and more equally distributed at lower density in extrasynaptic regions. Based on Ripley’s H function synaptic clusters with a diameter of ~ 90 nm and ~ 500 localizations were determined while the extrasynaptic smaller clusters have a median diameter of ~ 70 nm and ~ 100 localizations per cluster. These first results form the basis for further investigations on the mechanism of anti-NMDA receptor encephalitis.
40

Super-Resolution Microscopy of Synaptic Proteins / Hochauflösende Mikroskopie von Synaptischen Proteinen

Aufmkolk, Sarah January 2018 (has links) (PDF)
The interaction of synaptic proteins orchestrate the function of one of the most complex organs, the brain. The multitude of molecular elements influencing neurological correlations makes imaging processes complicated since conventional fluorescence microscopy methods are unable to resolve structures beyond the diffraction-limit. The implementation of super-resolution fluorescence microscopy into the field of neuroscience allows the visualisation of the fine details of neural connectivity. The key element of my thesis is the super-resolution technique dSTORM (direct Stochastic Optical Reconstruction Microscopy) and its optimisation as a multi-colour approach. Capturing more than one target, I aim to unravel the distribution of synaptic proteins with nanometer precision and set them into a structural and quantitative context with one another. Therefore dSTORM specific protocols are optimized to serve the peculiarities of particular neural samples. In one project the brain derived neurotrophic factor (BDNF) is investigated in primary, hippocampal neurons. With a precision beyond 15 nm, preand post-synaptic sites can be identified by staining the active zone proteins bassoon and homer. As a result, hallmarks of mature synapses can be exhibited. The single molecule sensitivity of dSTORM enables the measurement of endogenous BDNF and locates BDNF granules aligned with glutamatergic pre-synapses. This data proofs that hippocampal neurons are capable of enriching BDNF within the mature glutamatergic pre-synapse, possibly influencing synaptic plasticity. The distribution of the metabotropic glutamate receptor mGlu4 is investigated in physiological brain slices enabling the analysis of the receptor in its natural environment. With dual-colour dSTORM, the spatial arrangement of the mGlu4 receptor in the pre-synaptic sites of parallel fibres in the molecular layer of the mouse cerebellum is visualized, as well as a four to six-fold increase in the density of the receptor in the active zone compared to the nearby environment. Prior functional measurements show that metabotropic glutamate receptors influence voltage-gated calcium channels and proteins that are involved in synaptic vesicle priming. Corresponding dSTORM data indeed suggests that a subset of the mGlu4 receptor is correlated with the voltage-gated calcium channel Cav2.1 on distances around 60 nm. These results are based on the improvement of the direct analysis of localisation data. Tools like coordinated based correlation analysis and nearest neighbour analysis of clusters centroids are used complementary to map protein connections of the synapse. Limits and possible improvements of these tools are discussed to foster the quantitative analysis of single molecule localisation microscopy data. Performing super-resolution microscopy on complex samples like brain slices benefits from a maximised field of view in combination with the visualisation of more than two targets to set the protein of interest in a cellular context. This challenge served as a motivation to establish a workflow for correlated structured illumination microscopy (SIM) and dSTORM. The development of the visualisation software coSIdSTORM promotes the combination of these powerful super-resolution techniques even on separated setups. As an example, synapses in the cerebellum that are affiliated to the parallel fibres and the dendrites of the Purkinje cells are identified by SIM and the protein bassoon of those pre-synapses is visualised threedimensionally with nanoscopic precision by dSTORM. In this work I placed emphasis on the improvement of multi-colour super-resolution imaging and its analysing tools to enable the investigation of synaptic proteins. The unravelling of the structural arrangement of investigated proteins supports the building of a synapse model and therefore helps to understand the relation between structure and function in neural transmission processes. / Das Zusammenspiel von synaptischen Proteinen organisiert präzise die Funktion eines der komplexesten Organe, dem Gehirn. Die Vielfalt der molekularen Bestandteile, die diese neurologischen Beziehungen beeinflussen, verkomplizieren den Bildgebungsprozess, da die konventionellen Fluoreszenzmikroskopiemethoden Strukturen, die kleiner sind als das Beugungslimit, nicht auflösen können. Die Implementierung der hochauflösenden Fluoreszenzmikroskopie in das Gebiet der Neurowissenschaften ermöglicht die Visualisierung feiner Details neurologischer Verbindungen. Die hochauflösende Mikroskopietechnik dSTORM (direct Stochastic Optical Reconstruction Microscopy) und dessen Optimierung als Mehrfarbenanwendung sind Schlüsselelemente meiner Doktorarbeit. Mit der Möglichkeit mehr als ein Protein zu messen, ist es mein Ziel die Verteilung synaptischer Proteine mit nanometer Genauigkeit zu entschlüsseln und diese in ein strukturelles und quantitativ Verhältnis zueinander zu setzen. Aus diesem Grund wurden dSTORM spezifische Protokolle den Besonderheiten der jeweiligen neuronalen Proben angepasst und optimiert. In einem Projekt wird der neurotrophe Faktor BDNF (brain derived neurotrophic factor) in primären hippocampalen Neuronen untersucht. Mit einer Auflösungspräzision von unter 15 nm kann durch eine Färbung der Proteine Bassoon und Homer in der aktiven Zone die prä- und postsynaptische Seite identifiziert werden. Daraus resultierend können Kennzeichen für vollentwickelte Synapsen erfasst werden. Die Einzelmolekülsensitivität von dSTORM ermöglicht erstmalig die Messung von endogenem BDNF und zeigt, dass die BDNF Gruppierungen entlang von glutamatergen Präsynapsen verteilt sind. Diese Daten beweisen, dass hippocampale Neuronen die Möglichkeit haben, BDNF in der vollausgebildeten glutamatergen Präsynapse anzureichern und somit möglicherweise synaptische Plastizität beeinflussen. Die Verteilung des metabotropen Glutamatrezeptors mGlu4 wird in physiologischen Gehirnschnitten untersucht. Das ermöglicht den Rezeptor in seiner natürlichen Umgebung zu analysieren. Mit Zweifarben-dSTORM Messungen wird das räumliche Arrangement der mGlu4 Rezeptoren in der Präsynapse der parallelen Fasern der molekularen Schicht des Mauskleinhirns visualisiert und eine vier- bis sechsfache erhöhte Dichte des Rezeptors in der aktiven Zone, verglichen mit dem näheren Umfeld, aufgezeigt. Vorausgegangende funktionale Messungen zeigen, dass metabotrope Glutamatrezeptoren spannungsgesteuerte Calciumkanäle und Proteine, die in synaptische Vesikelgrundierung involviert sind, beeinflussen. Entsprechende dSTORM Daten deuten darauf hin, dass ein Teil der mGlu4 Rezeptoren mit dem spannungsgesteuerten Calciumkanal Cav2.1 auf einer Distanz von circa 60 nm korreliert ist. Diese Ergebnisse basieren auf der Verbesserung der direkten Analyse der Lokalisationsdatensätze. Werkzeuge, wie die Koordinaten basierte Korrelationsanalyse und die Nächste Nachbaranalyse von Clusterschwerpunkten werden sich ergänzend benutzt, um ein umfassendes Bild von Proteinverbindungen in der Synapse zu erzeugen. Die Grenzen und die Verbesserungsmöglichkeiten dieser Werkzeuge werden diskutiert, um die quantitative Analyse von Einzelmoleküldatensätzen voranzubringen. Die Durchführung von hochauflösender Mikroskopie an komplexen Proben, wie Gehirnschnitten, wird begünstigt durch die Maximierung der Aufnahmefläche in Kombination mit der Möglichkeit mehr als zwei Zielstrukturen zu visualisieren, um somit das Protein von primären Interesse in einen zellulären Zusammenhang zu setzen. Diese Herausforderung hat als Motivation gedient, ein Messprotokoll für korrelierte Strukturierte Beleuchtungsmikroskopie (SIM) und dSTORM zu etablieren. Die Entwicklung der Visualisierungssoftware coSIdSTORM erleichtert die Kombination dieser beiden leistungsstarken, hochauflösenden Techniken, sogar wenn diese auf getrennten Mikroskopieaufbauten umgesetzt werden. Als ein Beispiel werden Synapsen, die zwischen den parallelen Fasern in der molekularen Schicht des Cerebellums und den Purkinje-Zellen ausgebildet werden, mit SIM identifiziert und das Protein Bassoon in diesen Präsynapsen wird mit einer nanometergenauen Präzision drei-dimensional mit dSTORM Messungen visualisiert. In meiner Arbeit habe ich den Fokus auf die Weiterentwickelung von hochauflösender Mehrfarbenmikroskopie und die damit verbundenen analytischen Werkzeuge gelegt, sodass die Untersuchung von synaptischen Proteinen ermöglicht wird. Die Herausarbeitung des strukturellen Arrangements der untersuchten synaptischen Proteine unterstützt den Aufbau eines Models der Synapse und erweitert somit das Verständnis des Zusammenhangs von Struktur und Funktion in neuronalen Übertragungsvorgängen.

Page generated in 0.0791 seconds