Spelling suggestions: "subject:"food."" "subject:"ford.""
271 |
Evolution volcano-tectonique du nord de la plaque arabique (la syrie) : cadre géodynamique, chronologie K-Ar, caractères géochimiques et éléments de cartographie (SIG et télédétection) / The volcano-tectonic evolution of the northern part of the arabian plate (syria) : geodynamic framework, chronology K-Ar, geochemical characters, mapping (remote sensing and GIS)Al Kwatli, Mohamad Amer 20 June 2011 (has links)
L'activité volcanique Cénozoïque de la plaque arabique offre l’exemple d’un volcanisme intra-plaque développé dans un contexte géodynamique complexe. Après la construction des trapps basaltiques du plateau yémeno-ethiopien, vers 31 Ma, à partir de l’Oligocène terminal, une importante activité volcanique se développe, liée à la déchirure du bouclier arabo-nubien (l’ouverture de la Mer Rouge) et la convergence des plaques Arabique et Eurasienne (zone de suture du Bitlis-Zagros). Au nord de la plate-forme arabique, le volcanisme syrien s’implante dans un contexte général de compression, autour de la ceinture de plissement des Palmyrides et des zones de déformation adjacentes (graben de l'Euphrate et système de faille de la Mer Morte). Cette thèse porte sur l'évolution volcano-tectonique de la partie nord de la plaque Arabique, en particulier celle de la Syrie, combinant des études géochronologiques, géochimiques et morpho-structurales et modélisation géophysique. Notre analyse morpho-structurale de la province volcaniques de Harrat Ash Shaam (HASV), au sud des Palmyrides, a permis de caractériser numériquement plus de 800 cônes volcaniques monogéniques répartis entre le Sud Syrien, la Jordanie et le Nord de l’Arabie Saoudite. Cette étude de la distribution des cônes volcaniques, jointe aux données existantes sur l’épaisseur de la couverture sédimentaire traversée démontre que la corrélation négative constante entre l’intensité des éruptions volcaniques et la profondeur au socle est, de fait, influencée par le contexte tectonique. L’analyse normative de la distribution des cônes volcaniques, comparée à l'épaisseur des sédiments, est essentielle pour caractériser la tectonique d'extension dans des différentes zones. La télédétection, les observations sur le terrain, et notre base de données de plus de 40 nouvelles datations potassium-argon, entre 50 ka et 18 Ma, nous permettent de préciser l’évolution volcano-tectonique de la Syrie. Cette approche pluri-disciplinaire, appliquée au plateau du Al-Lajat, le champ volcanique le plus récent de HASV, nous a permis, d’abord, de proposer un modèle chronologique pour le processus d'altération en relation aux changements paléoclimatiques du Quaternaire. Elle a surtout permis de reconstituer l'évolution volcano-tectoniques du Nord de la plaque arabique, au cours du Cénozoïque et de situer différents styles d’extension responsables de l’activité volcanique. Le volcanisme commence à la fin de l’Oligocène et au Miocène inférieur, entre ~ 26 Ma et ~ 16 Ma, au sud des Palmyrides, dans la province de HASV, dans un contexte tectonique extensif. Du Miocène au Quaternaire, entre ~ 19 Ma et ~ 0,08 Ma, des champs volcaniques se développe au nord des Palmyrides, conséquence d’extensions tectoniques de second ordre. A partir du milieu du Miocène, la compression augmente et le développement magmatique se poursuit potentiellement dans une ambiance tectonique de rotation antihoraire. Au sud des Palmyrides cela correspond à l’activité volcanique constante au cours des 13 derniers millions d’années. Au nord, cette phase d’activité liée à la tectonique de rotation est concentrée dans l’espace et le temps ; elle correspond au Plateau d’Homs, dans le NW Palmyre, entre 6,3 et 4,3 Ma.Nous proposons un nouveau modèle d'évolution volcano-tectoniques pour la province volcanique de HASV. Il souligne le rôle essentiel joué par l'hétérogénéité de la lithosphère (sous les chaînes du Liban – anti-Liban et la zone de plissement des Palmyrides) dans la formation du volcanisme à partir du milieu du Miocène. Nos modèles géophysiques permettent d’estimer à ~150 km la profondeur moyenne de la limite lithosphère-asthénosphère. A l’analyse des données géochimiques des laves, la zone à l’ouest de HASV où cette limite apparaît moins profonde, à ~ 110 km, s’expliquerait par une anomalie thermique plutôt que par une remontée asthénosphérique. Géochimiquement, les laves Cénozoïques syriennes sont alcalines et sub-alcalines et présentent les caractères de magma émis dans un contexte continental intra-plaque. Ce sont des basanites et des téphrites, des basaltes, des andésites et des trachy-andésites basaltiques et des trachybasaltes. 30 échantillons des différentes provinces volcaniques syriennes montrent une variation significative des signatures des éléments traces incompatibles. Le processus de genèse de ces magmas montre une influence négligeable de la contamination crustale, et un effet de la cristallisation fractionnée limité à l'olivine et au clinopyroxène. Nos résultats montrent que les laves syriennes ont été produites par des taux variables de fusion partielle à partir de niveaux différents dans le manteau lithosphériques présentant localement des hétérogénéités. Le rapport LREE / MREE nous permet de montrer non seulement comment le degré de fusion partielle varie spatialement et temporellement au cours des derniers 18 Ma, mais encore d’illustrer comment varie le degré et le style de la tectonique au cours de cette période. L’une des conséquences de ce contexte tectonique pourrait être la migration d’hydrocarbures vers l’ouest du fait de l’extension crustale au Plio-Quaternaire dans la zone du graben de l’Euphrate à l’Est ; cette migration pourrait être guidée vers une zone de la croûte préalablement fracturée située au NW de la Syrie.En conclusion, le volcanisme cénozoïque de la Syrie résulte d’une tectonique extensive, influencée périodiquement par la convergence arabo-eurasienne, au nord et à l’est, convergence qui provoque des styles tectoniques de rotation ; cette tectonique contrôle la fusion partielle à différents niveaux dans le manteau. Le volcanisme du Nord de la plaque arabique se développe dans le cadre de l’ouverture de la Mer Rouge et débute en même temps que l’activité au sud de la mer Rouge. Il se poursuit jusqu’à la période historique, progressivement amorti vers le nord, l’extension étant contrariée par le cadre compressif à la marge Arabie-Eurasie. / The Cainozoic volcanic activity in the Arabian plate offers an excellent opportunity to study the intra-plate volcanism related to a complex tectonic setting. After the emplacement of the Yemeni-Ethiopian continental flood basalt plateau, ~ 31 Ma, since the Late Oligocene, widespread volcanic activity has erupted, accompanying the separation of the Arabian-Nubian Shield (development of Red Sea rifting) and the convergence between the Arabian and Eurasian plates (building of the Bitlis-Zagros thrust belts). In the northern part of the Arabian platform, the Syrian volcanism has taken place in a general compressional context, surrounding the Palmyride fold belt and adjacent to other deformation zones (e.g. the Euphrates graben and Dead Sea fault system). This thesis focuses on the volcano-tectonic evolution of the northern part of the Arabia plate, particularly in Syria, and essentially combines geochronological, geochemical, and morpho-structural studies, in addition to supplementary geophysical models. Our morpho-structural analyses of the Harrat Ash Shaam volcanic province (HASV) to the south of Palmyride, digitally characterise more than 800 monogenic volcanic cones placed in Syria, Jordan, and Saudi Arabia. These new data, together with the availability of sediment thickness data, give rise to a new volcano-tectonic approach. This study shows that the consistent negative correlation between the intensity of volcanism and basement depth is influenced by the tectonic setting. The normative analysis of the distribution of volcanic cones in relation to sediment thicknesses is critical when comparing the extension of tectonics in different zones. Remote sensing imagery, field work and our > 40 new K-Ar ages dataset ranging from ~0.05 million years (Ma) to ~18 Ma allow us to precise the Syria volcano-tectonic evolution through time. Regarding the youngest lava flows of HASV, the integration of the results makes it possible to suggest a chronological model for the alteration processes in relation to Quaternary palaeoclimatic changes. We reconstruct the volcano-tectonic evolution in Syria during the Cainozoic, and suggest different extension styles to explain the volcanism. It started during the Late Oligocene and the Early Miocene, between ~26 Ma and ~16 Ma to the South of Palmyride at HASV in an extensional tectonic context. From the Miocene to the Quaternary, between ~19 Ma and ~0.08 Ma, the volcanism developed to the North under second order extension tectonic conditions. Since the Mid-Miocene, the compression has increased and the magma erupted in relation with a possible counter-clockwise rotation tectonic relative motion. South of Palmyride it corresponds to the widespread eruptive phase during the last 13 Ma. To the North, this phase, linked to rotational tectonics appears concentrated in superficies and time; it corresponds to the Homs plateau, NW Palmyride, between 6.3 and 4.3 Ma. We suggest a new volcano-tectonic evolution model for the HASV. It highlights the essential role of lithosphere heterogeneity beneath Lebanon, in particular the anti Lebanon Mountains and Palmyride thrust belts, in triggering the Mid-Miocene volcanism. Our geophysical models estimate mean lithosphere – asthenosphere boundaries at about 150 km depth. According to geochemical data, the zone of shallowest depth ~110 km, W of HASV, could be the result of a thermal anomaly, instead of an asthenospheric upwelling. Geochemically, the Cainozoic Syrian lavas are alkaline and subalkaline rocks, typical of magma emitted in continental intraplate contexts. They are basanites and tephrites, basalts, basaltic andesites, basaltic trachyandesites, and trachybasalts. Thirty samples from different Syrian volcanic provinces show significant variation in terms of incompatible trace element signatures. Crustal contamination plays a negligible role in the process of magma genesis, as does crystal fractionation, essentially restricted to olivine and clinopyroxene. Our results show that the Syrian lava has been generated by variable rates of partial melting from different levels of a locally heterogeneous lithospheric mantle. The LREE/MREE ratio not only illustrates how the degree of partial melting was changed spatially and temporally during the last ~18 Ma, but it also illustrates how the degree and style of extension tectonics changed through time.
|
272 |
Los Paleocolapsos kársticos en las plataformas carbonatadas del Mioceno Superior de Mallorca. Análisis geográfico, genético y evolutivoRobledo Ardila, Pedro Agustín 04 November 2005 (has links)
El análisis de estructuras paleokársticas ha atraído, en los últimos años, el interés de numerosos investigadores a la información que aportan a la geología aplicada y la paleogeomorfología. Estudios recientes se han centrado en la aplicación de técnicas de exploración del subsuelo debido a la escasez de afloramientos. En la presente Memoria se analizan íntegramente las formas de hundimiento pretéritas que afloran discontinuamente con gran detalle, en los acantilados de las costas meridional (plataforma de Llucmajor) y oriental (plataforma de Santanyí) de Mallorca, a lo largo de más de 75 km de línea de costa, afectando a las rocas carbonáticas del Mioceno superior. El estudio se ha centrado en la distribución geográfica, evolución geológica y las características geomorfológicas de estos paleocolapsos, con especial énfasis en su génesis, su relación con la arquitectura y distribución de las facies, así como en las formas y productos asociados.Los paleocolapsos han sido descritos en su contexto litoestratigráfico y estructural dentro de las mencionadas plataformas carbonáticas, siendo este trabajo una contribución al conocimiento del karst en estas unidades geológicas y su relación con las fluctuaciones marinas. La karstogénesis queda reflejada en estas formas pretéritas donde se han observado depósitos y formas de disolución ligadas a la dinámica kárstica controlada, en el caso que nos ocupa, por las fluctuaciones del nivel del mar: brechas, sedimentos detríticos, cementos, así como distintos tipos y volúmenes de porosidad. La mayor parte de estas formas (sobre un total de 177), cuyas dimensiones en sección varían desde pocos metros hasta afloramientos con 28 m de altura y más de 100 m en la horizontal, se ubican en la plataforma de Santanyí a excepción de dos estructuras ubicadas en la plataforma de Llucmajor.El análisis geológico y su relación con los paleocolapsos muestra como en la plataforma de Llucmajor éstos afectan a las facies de la Unidad Complejo Arrecifal (facies de back reef y frente arrecifal). Sin embargo, en la plataforma de Santanyí, los paleocolapsos afectan tanto a parte del Complejo Arrecifal (facies de back reef), como a la totalidad de la Unidad Calizas de Santanyí. A partir del estudio de la arquitectura de facies del Complejo Arrecifal en la plataforma de Llucmajor se ha establecido el modelo deposicional en la plataforma de Santanyí. Sin embargo, ésta última se encuentra compartimentada como consecuencia del control de dos fallas en dirección de orientación E-O en S'Algar y Na Magrana, donde se localiza el contacto entre facies de lagoon externo y talud arrecifal. No obstante, la cartografía y análisis de los lineamientos en dicha plataforma ha permitido identificar dos familias principales con dos direcciones dominantes; NE-SO y NO-SE, siendo la dirección E-O menos representativa. Se han observado fracturas distensivas y pequeñas fallas inversas miocenas asociadas al proceso de colapso, así como fracturas y fallas postmiocenas, y fracturas cuaternarias.El estudio de la geometría en sección de los paleocolapsos pone de relieve que la formas en "V", "U" y conoidales son las más comunes. Han sido identificadas dos partes diferentes en un paleocolapso tipo: una inferior donde se observa la paleocavidad ubicada en la base del paleocolapso (lagoon externo y/o frente arrecifal), con una geometría irregular de dimensiones entre 1 m y 9 m rellena por sedimentos adyacentes y suprayacentes a ésta; y una parte superior, coincidente con los bordes de la estructura (lagoon interno/Calizas de Santanyí) buzando con inflexión conoidal hacia la paleocavidad.Se han identificado cuatro tipos de brechas (crackle, crackle-laminae-split, de mosaico y caótica) en las estructuras de paleocolapso asociadas cada una de ellas a distintos niveles estratigráficos y, en algunos paleocolapsos, con una gradación vertical y lateral. Son característicos de estos depósitos los sedimentos detríticos (matriz) y los cementos asociados (vadosos y freáticos). En general, el cemento domina sobre la matriz en la zona inferior del paleocolapso, mientras que por encima, es la matriz la que domina sobre el cemento. El análisis por difracción de Rayos X de la matriz indica para la muestra total que la calcita es el mineral principal y el cuarzo el mineral secundario. En la fracción arcilla, la moscovita, la illita y la caolinita son los minerales más comunes. De ello, junto con el estudio de láminas delgadas en estos depósitos, donde se han observado tamaños de grano en el cuarzo superior a 2 mm, se deduce un ambiente de sedimentación subsuperfical y otro subaéreo de lo que se extrae un origen, proceso de transporte y sedimentación diversos, así como la evolución cristaloquímica en determinados minerales. Los cementos son de naturaleza calcítica, con contenidos relativamente altos en magnesio para los freáticos y bajos para los vadosos. Para el estudio de la porosidad en los paleocolapsos se ha procedido a su clasificación en dos tipos principales, interclasto e intraclasto, a partir de las cuales se ha estudiado la macro y microporosidad. La brecha caótica de colapso es la que presenta volúmenes de porosidad más elevados y tipologías diversas. El análisis de isótopos estables muestra una gran homogeneidad entre la composición isotópica de los cementos, con valores en δ18O y δ13C ligeros, lo que indica condiciones análogas de precipitación, con dominio de aguas dulces sobre las saladas. Tanto la marca del oxígeno como del carbono parecen indicar que los cementos se depositaron en un período interglaciar coincidente con algún estadio isotópico impar.El estudio de la arquitectura de facies de la plataforma de Llucmajor ha permitido elaborar un modelo genético de ocurrencia para los paleocolapsos y su ubicación espacio-temporal. Dicho modelo, ha sido corroborado por la relación entre la distribución de facies y paleocolapsos en la plataforma de Santanyí, por la observación en algunos paleocolapsos de sedimentos a techo de la Unidad Calizas de Santanyí que sellan la estructura, así como por el tipo de brechas características de colapsos sinsedimentarios (brecha crackle-laminae-split), que muestran una deformación dúctil de los materiales cuando éstos no estaban completamente consolidados, dando lugar a formas laxas de bajo ángulo. Los procesos genéticos que dieron lugar a los paleocolapsos kársticos están directamente relacionados con la alta frecuencia de fluctuación del nivel del mar durante el Mioceno superior, la misma que controló la arquitectura de facies y la posición del nivel freático. Las oscilaciones del nivel freático causaron la alternancia de dominios freáticos y vadosos así como, de agua dulce y agua salada en la interfase, provocando la disolución de los parches coralinos y el posterior hundimiento del techo de las cavidades. El estudio integral de todos estos aspectos junto con el análisis de una red de paleocauces y una playa fósil, ha permitido realizar una reconstrucción paleogeográfica desde el Messiniense en la plataforma de Santanyí e identificar estructuras de paleocolapso postmiocenas y cuaternarias. Con estos datos se ha procedido a la comparación de los paleocolapsos kársticos con otras estructuras similares en el País Vasco y Las Islas de Malta, de lo que se extraen analogías y diferencias, determinadas fundamentalmente por el orden de fluctuación del nivel del mar. Por último, se discute el papel de los paleocolapsos kársticos como elementos que contribuyen en cierta medida a la ocurrencia de hidrocarburos en plataformas carbonáticas, pudiendo ser excelentes reservorios debido al gran número de afloramientos, el volumen de roca afectada y a su elevada porosidad y permeabilidad. / Paleokarst tend to differ from studies of recent and modern karst landforms though is important the genetic understanding of the karst processes for analysis a paleokarst structure. Paleokarst systems form an important class of carbonate record and they have a pronounced lateral and vertical spatial complexity that results from a complex history of formation. Most of the known karst systems are epigenetic and they are the result of near-surface karst processes during periods of subaerial exposure and latter burial compaction and diagénesis. Scale, porosity types and spatial complexities of these paleokarst systems depends on the carbonate rock solubility, paleoclimatic conditions, lowering of base level either by tectonic uplift or sea-level fall and time of subaerial exposure. Uplift, in addition, commonly induces fracturing and faulting that further control karst development. Ascertaining and predicting paleokarstic heterogeneities within carbonate rocks are strategic to fluids field development and optimum production. With current subsurface methods, however, most of the smaller-scale stratigraphic architecture and diagenetic facies are difficult to define. Predictive models for exploration and development are best made from outcrop studies of well-exposed examples. Accuracy for prediction of these models depends on the detailed understanding of the genetic factors controlling their geometries, scale, pore networks and spatial complexities of these potential karstic store. Miocene carbonates (Upper Tortonian-Lower Messinian) in Mallorca Island are composed of reefal (Reef Complex) and shallow water carbonates (Santanyí Limestone) that prograded across platforms surrounding paleoislands. The contact between the Reef Complex and the Santanyí Limestone is a subaerial erosion surface with paleokarst features. The shallow-water carbonates beds both the lagoonal beds of the Reef Complex and basal beds of the Santanyí Limestone, are affected by paleocollapse structures produced by roof collapse of caverns developed in the underlying Reefal Complex. These paleocollapse structures affecting to the carbonate platform allows to propose a genetic model to explain the origin of these paleosink, that are related to early diagenetic processes induced by high-frequency sea-level fluctuations, the same sea-level fluctuations that controlled the facies architecture of the carbonate platforms.Cartography and study of lineaments and fractures on Santanyí Platform have permitted identified two principals groups with two main directions: NE-SO and NO-SE. Have been observed distensiva fractures and Miocene small inverse faults related with de breackdwon phenomena. Moreover, postmiocenes and quaternary faults and fractures have been recognized.The geometry of paleocollapse structures is commonly (in section) as "V", "U" or funnel. The size is variable from few meters of long to thousands meters, and few meters of weigh to thirteen meters. Breccias has been classified as crackle, crackle-laminae-split, mosaic and chaotic types. Chaotic breccias grade from matrix-free, clasts-supported breccias to matrix-supported breccias. The matrix mineralogy is compose in the total sample for calcite in the major part and quartz in less quantity. However, same structures present quartz as principal mineral. To the clay fraction, caolinite, illite and moscovite are the most general mineral present.The geochimical sediment (carbonate) are filling a part of interclaste breccias porosity. This is commonly phreatic speleothems. Isotopic studies of this sediments show δ18O and δ13C contents negatives. This fact could indicate a fresh water environment deposition
|
Page generated in 0.0563 seconds