Spelling suggestions: "subject:"fonction mitochondrial""
1 |
Caractérisation du complexe Lre1p/Gsp1p chez la levure Saccharomyces cerevisiaeLainesse, Karine January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Stage-specific changes in the Krebs cycle network regulate human erythroid differentiation / Régulation des stades d’érythropoïèse humaine par des modifications dans le cycle de KrebsRomano, Manuela 20 December 2018 (has links)
Le processus conduisant à la prolifération et différenciation des cellules souches hématopoïétiques (CSH) en cellules de toutes les lignées sanguines s’appelle l’hématopoïèse. Bien que l'engagement des CSH soit régi par les cytokines, les facteurs de transcription, les modificateurs épigénétiques et la niche des CSH, notre groupe a constaté que leur engagement vers la lignée érythroïde dépendait aussi du métabolisme de la glutamine. La glutaminolyse contribue à la biosynthèse des nucléotides de novo ainsi qu’à la production de l'alpha-kétoglutarate (αKG), intermédiaire métabolique du cycle TCA (Oburoglu et al. 2014). Il est cependant important de noter que la différenciation érythroïde est un processus unique, où chaque cellule fille est structurellement et fonctionnellement différente de sa cellule mère. Chaque division définit un stade de différenciation précis avec un dernier cycle de division produisant un réticulocyte énucléé. Ainsi, nous avons émis l'hypothèse que les réseaux métaboliques mobilisés dans les progéniteurs érythroïdes changent en fonction du stade de différenciation et que ces réseaux régulent la transition des progéniteurs d'un stade à l'autre.Au cours de ma thèse, j’ai caractérisé les états métaboliques associés aux différents stades de différenciation des progéniteurs érythroïdes. Nous avons ainsi montré qu'aux stades précoces de différenciation érythroïde, avant la différenciation terminale, les progéniteurs hématopoïétiques présentent une activité métabolique accrue avec un niveau de phosphorylation oxydative (OXPHOS) plus élevé. Ces données sont en corrélation avec l'augmentation de la génération de l’αKG à ces stades de différenciation. De plus, nous avons constaté une augmentation de l’OXPHOS de ces progéniteurs en présence d’αKG exogène. Cependant, la différenciation terminale des précurseurs érythroïdes, caractérisée par la perte de la masse mitochondriale et de leur potentiel membranaire, est associée à une diminution du niveau d'OXPHOS. Ainsi, l'administration exogène d’αKG, a fortement atténué la différenciation érythroïde terminale et l'énucléation, sans affecter la différenciation des pro-érythroblastes. Inversement, un antagoniste de l’αKG (diméthyloxalylglycine, DMOG) n'a pas altéré la différenciation terminale ou l'énucléation, malgré l'abrogation de l'OXPHOS dans les érythroblastes.Ces données suggèrent que la production d’αKG et sa contribution à l’OXPHOS perturbent l'énucléation des globules rouges. C'est pourquoi, dans le but de réduire les niveaux intracellulaires d’αKG, nous avons inhibé l’expression de l'isocitrate déshydrogénase I (IDH1), enzyme cytosolique catalysant la conversion de l'isocitrate en αKG. Cependant, comme IDH1 peut catalyser les réactions dans les deux sens, la diminution de son expression pourrait également augmenter les niveaux d’αKG. En effet, nous avons constaté que le knockdown d'IDH1 entraînait une forte atténuation de la différenciation terminale et de l'énucléation des précurseurs érythroïdes. Cet effet est probablement dû à un déséquilibre de la disponibilité des substrats ; ainsi l’administration ectopique de l’αKG ainsi que du citrate renforce l’altération de la différenciation terminale des précurseurs érythroïdes IDH1-/- ainsi que leur énucléation. Cette étude identifie donc un rôle crucial pour le métabolite αKG dans la régulation de la fonction mitochondriale et de l’OXPHOS, processus qui sont une condition sine qua non pour la différenciation des précurseurs érythroïdes au stade proérythroblaste. Nous montrons en outre que la suppression d’OXPHOS et la catalyse d’intermédiaires du TCA, substrats d’IDH1, sont requis pour les phases terminales de la différenciation érythroïde et l'énucléation.En conclusion, les résultats obtenus au cours de ma thèse mettent en évidence la nature dynamique des réseaux métaboliques qui régulent la progression des précurseurs érythroïdes tout au long des différents stades de la différenciation érythroïde. / Hematopoiesis is the process whereby hematopoietic stem cells (HSCs) proliferate and differentiate to all blood cell lineages. While HSC commitment is known to be regulated by cytokines, transcription factors, epigenetic modifiers and the HSC niche, our group found that specification of HSCs to the red cell lineage is dependent on glutamine metabolism. Glutaminolysis contributes to de novo nucleotide biosynthesis and to the generation of the alpha-ketoglutarate (αKG) TCA cycle metabolite (Oburoglu et al. 2014). Importantly though, erythroid differentiation is a unique process as each daughter cell is structurally and functionally different from its parent cell. Each division defines a stage of differentiation with the final division cycle resulting in the production of an enucleated reticulocyte which further matures to a biconcave erythrocyte. Thus, we hypothesized that progenitor metabolic networks change as a function of the erythroid differentiation stage and moreover, that they regulate the transition of progenitors from one stage of differentiation to the next.During my PhD, I assessed the metabolic alterations that occur as a function of the erythroid differentiation stage. We showed that at early stages of human red cell development, prior to terminal differentiation, hematopoietic progenitors exhibited an increased metabolic activity with a significantly higher level of oxidative phosphorylation (OXPHOS). This correlated with the increased generation of αKG and indeed, we found that ectopic αKG directly augmented OXPHOS in these progenitors. However, the terminal differentiation of erythroid precursors, characterized by the loss of mitochondrial mass and membrane potential, was associated with a decreased level of OXPHOS. Notably, ectopic αKG, which did not alter pro-erythroblast erythroid differentiation, severely attenuated terminal differentiation and enucleation. Conversely, an αKG antagonist (dimethyloxalyl glycine, DMOG) did not negatively impact on terminal differentiation or enucleation despite abrogating OXPHOS in erythroblasts.These data suggested that the production of αKG and its subsequent contribution to oxidative phosphorylation perturb red cell enucleation. We therefore downregulated isocitrate dehydrogenase I (IDH1), the cytosolic enzyme that catalyzes the conversion of isocitrate to αKG, by an shRNA approach in an attempt to decrease αKG levels. However, because IDH1 can catalyze both the forward and reverse reactions, its downregulation could also increase αKG levels. Indeed, we found that IDH1 knockdown resulted in a severe attenuation of terminal erythroid differentiation and enucleation. This effect was likely due to an imbalance in substrate availability––both ectopic αKG as well as citrate further decreased polychromatic to orthochromatic erythroblast differentiation and the subsequent enucleation of IDH1-knockdown erythroid precursors. Thus, the present study identifies a crucial role for the αKG metabolite in regulating mitochondrial function and oxidative phosphorylation, processes that are a sine qua non for erythroid precursors at the pro-erythroblast stage. We further show that terminal erythroid differentiation and enucleation requires OXPHOS suppression and the IDH1-mediated enzymatic catalysis of its TCA substrates.To conclude, the results generated during my PhD highlight the dynamic nature of the metabolic networks that regulate the progression of erythroid precursors through the distinct stages of erythroid differentiation.
|
3 |
Influence d’un régime riche en huile de palme sur le statut antioxydant, la fonction mitochondriale et les désordres métaboliques associés à l'obésité / Influence of a diet rich in palm oil on antioxidant status, mitochondrial function and metabolic disorders associated with obesityDjohan, Youzan Ferdinand 10 November 2017 (has links)
L’huile de palme est l’huile végétale la plus consommée au monde. Du fait de sa teneur élevée en acides gras saturés (AGS), notamment en acide palmitique, cette huile est considérée par certains auteurs comme potentiellement nocive pour la santé. Cette étude avait pour objectif de comparer les effets de l’huile de palme (rouge ou oléine), à l’huile d’olive (réputée bonne pour la santé) et aux saindoux (riche en AGS), sur la santé. Pour réaliser cette étude, 40 rats mâles Wistar ont été répartis en 5 groupes de 8 rats chacun : 1 groupe contrôle et 4 groupes nourris par des régimes obésogènes contenant respectivement de l’huile de palme rouge, de l’oléine de palme, de l’huile d’olive ou du saindoux. Après 12 semaines de régime, les rats ont été sacrifiés et les tissus prélevés. Les examens réalisés sur les tissus ont montré que l’huile de palme (rouge ou oléine) induit un statut antioxydant et un profil lipidique superposables à ceux de l’huile d’olive. Tous les régimes obésogènes ont favorisé la prise de poids, l’altération de la fonction mitochondriale et la perturbation du métabolisme glucidique par l’induction d’une insulino-résistance. Il ressort de cette étude que l’huile d’olive est plus délétère pour le foie que l’huile de palme (rouge ou oléine) et le saindoux. Hormis l’huile de palme rouge, l’oléine de palme, l’huile d’olive et le saindoux influencent négativement les tissus adipeux. Les études menées sur l’aorte ont montré que les effets vasculaires de l’huile de palme sont moins délétères pour l’aorte que le saindoux et l’huile d’olive.Les résultats de cette étude indiquent que globalement, l’huile de palme (rouge ou oléine) n’a pas d’effets délétères supérieurs à ceux de l’huile d’olive concernant les organes qui ont été étudiés / Palm oil is the most consumed vegetable oil in the world. Because of its high content of saturated fatty acids (SFA), particularly palmitic acid, this oil is considered by some authors as potentially harmful to health. The aim of this study was to compare the effects of palm oil (red or olein), olive oil (considered good for health) and lard (rich in SFA), on health. To do this, 40 male Wistar rats were divided into 5 groups of 8 rats each: 1 control group et 4 groups fed by high fat diet (HFD) containing respectively red palm oil, palm olein, olive oil or lard. After 12 weeks of diet, the rats were sacrificed and the tissues removed. Tissue tests have shown that palm oil (red or olein) induces an antioxidant status and a lipid profile superimposed on those of olive oil. All HFD contributed to weight gain, impaired mitochondrial function, and disturbance of carbohydrate metabolism by the induction of insulin resistance. The study shows that olive oil is more deleterious to the liver than palm oil (red or olein) and lard. Apart from red palm oil, palm olein, olive oil and lard negatively influence adipose tissue. Studies on the aorta have shown that the vascular effects of palm oil are less deleterious to the aorta than lard and olive oil.Overall, the results of this study show that harmfull effects of palm oil (red or olein) were not worse than that of olive oil on organ that were analyzed
|
4 |
Fonction mitochondriale et espèces réactives dérivées de l'oxygène : effets du genre et de l'entraînement en endurance chez le rat Wistar et l'anguille européenne / Mitochondrial function and reactive oxygen species : effects of gender and endurance training in Wistar rat and European eelFarhat, Firas 20 March 2015 (has links)
La mitochondrie est le siège principal de la production d’énergie sous forme d’ATP en conditions aérobies, mais aussi d’espèces réactives dérivées de l’oxygène (ROS). La fonction mitochondriale est étroitement liée à la production de ROS puisque ces derniers, selon leur taux, peuvent altérer ou optimiser le rendement énergétique. La plasticité structurale et fonctionnelle de la mitochondrie est essentielle au maintien de l’homéostasie dans toute situation qui nécessite des ajustements métaboliques comme l’exercice physique. Les mécanismes adaptatifs de la fonction mitochondriale et des ROS lors de l’entrainement sont encore loin d’être élucidés ainsi que l’impact du genre sur ces réponses. Dans cette perspective, deux modèles animaux (rat Wistar et anguille européenne) ont été choisis. Les effets d’un entrainement en endurance de même intensité (70% de la vitesse maximale aérobie de course ou de nage) ont été étudiés chez le rat Wistar et l’anguille européenne argentée. Cette dernière est une espèce endurante capable d’effectuer une migration de reproduction de 6000 km et caractérisée par un dimorphisme sexuel de taille. Des mesures in vitro de la consommation d’oxygène, la production radicalaire et d’ATP ont été effectuées simultanément à partir de fibres perméabilisées de cœur et de muscle squelettique. La vulnérabilité ou résistance de la fonction mitochondriale à l’exposition à un système générateur de ROS (mimant un stress oxydant) a également été étudiée. Avant entrainement, chez le rat Wistar, la femelle présente une fonction mitochondriale plus efficiente énergétiquement et plus résistante aux ROS, alors que chez l’anguille, ce profil métabolique et radicalaire est plutôt observé chez le mâle. Après entrainement, quelle que soit l’espèce, la meilleure performance physique observée s’accompagne de modifications métaboliques et radicalaires différentes selon le genre et l’espèce. Chez le rat, l’amélioration de la fonction mitochondriale se traduit différemment selon le sexe. Chez le mâle, l’entrainement induit une amélioration du rendement énergétique via un meilleur couplage entre oxydation et phosphorylation et/ou une meilleure utilisation des électrons au niveau de la chaine respiratoire. Chez la femelle, l’augmentation de la production d’ATP serait liée à l’augmentation de la consommation d’oxygène mitochondriale. Comme chez le rat, l’entraînement induit globalement chez l’anguille une amélioration du rendement énergétique et de la résistance de la fonction mitochondriale aux ROS, mais uniquement chez le mâle. L’ensemble de ces résultats montre des réponses métaboliques et radicalaires dépendantes du genre. Quelle que soit l’espèce, l’entrainement semble être chez le mâle plus bénéfique que chez la femelle en termes d’efficacité énergétique mitochondriale et de résistance de la fonction mitochondriale à un stress oxydant. Dans le contexte de la migration de l’anguille, ces adaptations permettraient au mâle, largement plus petit que la femelle, une efficacité de nage supérieure, permettant leur synchronisation d’arrivée sur le lieu de reproduction. Les similitudes interspécifiques de réponse à l’entraînement selon le genre confortent l’intérêt d’utilisation du modèle poisson dans le champ de la physiologie de l’exercice. / Mitochondrion is the main site of aerobic energy (ATP) and reactive oxygen species (ROS) productions. Mitochondrial function is closely linked to ROS, which, according their rate, can alter or optimize energy efficiency. Structural and functional plasticity of mitochondria is essential to maintain homeostasis in any situation that requires metabolic adjustments as physical exercise. The adaptive mechanisms of mitochondrial function and ROS during training and the impact of gender on these responses are still far from being solved. In this perspective, two animal models (Wistar rat and European eel) were chosen.The effects of endurance training of the same intensity (70% of maximal aerobic speed running or swimming) were studied in Wistar rat and silver European eel. The latter is an enduring species capable of performing a spawning migration of 6000 km and characterized by sexual dimorphism in size. In vitro measurements of oxygen consumption, free radical and ATP productions were carried out simultaneously from heart and skeletal muscle permeabilized fibers. The vulnerability or resistance of the mitochondrial function to a ROS generating system exposure (mimicking oxidative stress) was also studied.Before training, in rat, female has a mitochondrial function energetically more efficient and more resistant to ROS, whereas in eel, this metabolic and radical profile is observed rather in male. After training, whatever the species, the improved physical performance observed is associated with various metabolic and radical changes which depending on gender and species. In rats, the improving of mitochondrial function translates differently according to gender. In male, training induces improvement in energy efficiency through a better coupling between oxidation and phosphorylation and/or better use of electrons at the respiratory chain level. In female, increasing in ATP production may be related to the increase in mitochondrial oxygen consumption. As in rats, training induces globally in eel an improvement in energy efficiency and resistance of mitochondrial function to ROS, but only in male. All these results show metabolic and radical responses depending on gender. Whatever the species, training seems to be most beneficial in males than in females in terms of mitochondrial energy efficiency and resistance of mitochondrial function to oxidative stress. In the context of eel migration, these adaptations allow to male, largely smaller than female, a higher swim efficiency, allowing their synchronization on breeding site. Interspecific similarities in training response by gender confirm the interest of fish model’s using in the field of exercise physiology.
|
5 |
Etude des effets et des mécanismes cardioprotecteurs de l'éthanol chez le ratGuiraud, Annabelle 23 October 2006 (has links) (PDF)
La consommation chronique et modérée d'éthanol (CCME) est associée à une réduction de la<br />mortalité cardiaque et à une élévation des acides gras oméga 3 (ω3) dans le sang et les<br />cellules. Les ω3 d'origine alimentaire sont connus pour réduire la mortalité cardiaque chez<br />l'homme, induire une cardioprotection chez l'animal et s'incorporer dans les membranes<br />notamment de la mitochondrie, siège important de la cardioprotection. Comme l'éthanol et les<br />ω3 semblent induire des effets cardioprotecteurs similaires, nous avons déterminé si une<br />CCME pouvait mimer le remodelage lipidique mitochondrial induit par une supplémentation<br />en ω3. Ces modifications structurales pourraient modifier la fonction mitochondriale et<br />expliquer la cardioprotection par l'éthanol. A partir d'un modèle de coeur isolé perfusé de rat,<br />nous avons montré que l'éthanol et les ω3 protègent de manière similaire le myocarde en<br />limitant la taille de l'infarctus après une ischémie/reperfusion. Après avoir vérifié qu'une<br />supplémentation en ω3 induit un enrichissement en ω3 des membranes mitochondriales<br />cardiaques, nous avons démontré qu'une CCME induit une augmention des ω3 dans la<br />cardiolipine et la phosphatidylcholine mitochondriales mais sans conséquence sur la fonction<br />mitochondriale. Dans le plasma et les membranes cellulaires, une CCME augmente les<br />teneurs en ω3 et réduit la concentration en palmitate, un acide gras pro-apoptotique. En<br />conclusion, une CCME protège le myocarde contre la nécrose cellulaire, augmente la teneur<br />en acides gras cardioprotecteurs (ω3) et diminue la concentration en acide gras proapoptotique<br />(palmitate). La cardioprotection induite par une CCME pourrait donc résulter<br />d'une interaction entre l'éthanol, la voie des ω3 et celle de l'apoptose.
|
6 |
Effets cardiovasculaires de polluants atmosphériques d'origine automobile : Etude par inhalation chez le rat de l'effet du NO2 seul et en mélange dans des gaz d'échappement de moteur Diesel. / Cardiovascular effects of air pollutants of automotive origin : study by inhalation in the rat of the effect of NO2 alone and in mixture in Diesel engine exhaust gasesKaroui, Ahmed 20 November 2017 (has links)
La pollution de l’air liée au trafic automobile constitue un problème de santé majeure et est reconnue comme un facteur de risque important pour les maladies cardiovasculaires. La contribution de la phase particulaire des émissions de moteur Diesel dans ces effets sanitaires a été bien établie. Cependant, les études portant sur la phase gazeuse sont peu nombreuses alors que l’évolution des systèmes de dépollution permettant un abattement des particules Diesel, ont conduit à un accroissement des polluants de la phase gazeuse tels que le Dioxyde d’azote (NO2),un polluant majeur et toxique. Par conséquent, l’objectif général de ce travail a été d’évaluer la part imputable de la phase gazeuse, et plus spécifiquement du NO2, dans les effets cardiovasculaires induits par des émissions Diesel représentatives du parc automobile actuel. Dans un premier temps, une étude comparative a été réalisée chez le rat Wistar exposé par inhalation au NO2 seul ou à des émissions Diesel, produisant du NO2, et prélevées en amont et en aval d’un filtre à particules(Fap). Afin de comprendre les mécanismes d’action mis en jeu, la fonction mitochondriale et le stress oxydant ont été évalués, parallèlement aux mesures de fonction cardiaque après une exposition unique (une seule exposition de 3h) et après une exposition répétée (3h/jour, 5jr/semaine pendant 3 semaines). Dans un deuxième temps, une étude portant plus spécifiquement sur les effets du NO2sur la fonction vasculaire et ses conséquences éventuelles dans un modèle d’hypertension artérielle a été réalisée en utilisant deux modèles expérimentaux : un modèle physiologique (rat Wistar) et un modèle d’hypertension artérielle (rat SHR). L’évaluation de la fonction vasculaire a été réalisée par une approche ex vivo à partir d’artères coronaires isolées après des expositions uniques et répétées chez le rat Wistar et uniquement après une exposition unique chez le rat SHR. Pour ce dernier, des expositions répétées ont également été réalisées pour explorer la fonction mitochondriale. Nos résultats montrent que l’exposition unique aux émissions, en amont et en aval du Fap induisent une légère altération de la fonction cardiaque, qui est cependant plus importante lors des expositions à 5 ppm de NO2 mais réversible. Après trois semaines d’expositions répétées, la dysfonction cardiaque persiste puisque le lendemain de la dernière exposition, les diamètres ventriculaires restent élevés, que ce soit après les expositions aux émissions Diesel, amont et aval, et au NO2. La dysfonction cardiaque est accompagnée d’une altération de la vasorelaxation des artères exposées au NO2. En parallèle à ces altérations, nous avons observé une dysfonction mitochondriale, plus particulièrement lors des expositions au NO2 indépendamment d’un stress oxydant myocardique ou systémique. L’exposition au NO2 aggrave la dysfonction mitochondriale préexistante au cours de l’hypertension artérielle, ce qui suggère l’aggravation de la fonction cardiovasculaire. L’ensemble de ces résultats démontre l’effet de la phase gazeuse, notamment du NO2 sur la fonction mitochondriale dans les deux modèles expérimentaux témoignant de l’importance de la prise en considération de l’action de la phase gazeuse dans les systèmes de dépollution à venir. / Air pollution from car traffic is a major health issue and is recognized as an importantrisk factor for cardiovascular disease. The contribution of the particulate phase of Diesel engine emissions to these health effects has been well established. However, studies on the gas phase are few in number, while the evolution of the depollution systems allowing a reduction of the Diesel particles, led to an increase in pollutants of the gas phases such as nitrogen dioxide (NO2) a major and toxic pollutant. consequently, the general objective of this work was to evaluate the attributable part of the gaseous phase, and more specifically NO2, in the cardiovascular effects induced by Diesel emissions representative of the current fleet. In a first step, a comparative study was conducted in the Wistar rat exposed by inhalation to NO2 alone or to Diesel emissions, producing NO2, and taken upstream and downstream of a particulate filter (PF). In order to understand the mechanisms of action involved, mitochondrial function and oxidative stress were evaluated, in parallel with cardiacfunction measurements after a single exposure (a single exposure of 3 h) and after repeated exposure (3 h / day, 5 days / week for 3 weeks). Second, a more specific study on the effects of NO2 on vascular function and its possible consequences in a hypertension model was carried out using two experimental models: a physiological model (Wistar rat) and a model of hypertension (SHR). Evaluation of the vascular function was performed by an ex vivo approach from isolated coronary arteries following single and repeated exposures in the Wistar rat and only after a single exposure in the SHR. For the latter, repeated exposures were also performed to explore mitochondrial function. Our results show that single exposure to emissions upstream and downstream of PF induces a slight alteration of cardiac function, which is more important at 5 ppm NO2 but reversible. After three weeks of repeated exposure, cardiac dysfunction persists as ventricular diameters remain high the day after the last exposure, both after exposures to upstream and downstream Diesel emissions and to NO2. Cardiac dysfunction is accompanied by an alteration in the vasorelaxation of the arteries exposed to NO2. In parallel with these alterations, weobserved mitochondrial dysfunction, particularly during NO2 exposures independently of myocardial or systemic oxidative stress. Exposure to NO2 aggravates pre-existingmitochondrial dysfunction during hypertension, suggesting worsening of cardiovascular function. All these results demonstrate the effect of the gaseous phase, in particular NO2, on the mitochondrial function in the two experimental models, indicating the importance of taking into account the action of the gas phase in the depollution systems to come up.
|
7 |
Implication of mitochondria endoplasmic-reticulum interactions in the control of hepatic metabolism / Implication des interactions mitochondrie-réticulum endoplasmique dans le contrôle du métabolisme hépatiqueTheurey, Pierre 16 July 2015 (has links)
Le foie est un organe indispensable dans le contrôle de l'homéostasie énergétique du corps humain. En particulier, le métabolisme hépatique est crucial pour l'homéostasie glucidique et lipidique. Les voies cataboliques et anaboliques sont en équilibre constant et régulées de façon synergique en fonction de la disponibilité en nutriments et de la demande en énergie. La perturbation de cet équilibre, notamment en cas d'obésité, peut conduire à l'accumulation intra-hépatique de lipides, qui est une des causes principales de la survenue de l'insulino-résistance hépatique (IRH), conduisant à l'hyperglycémie chronique et au diabète de type 2 (DT2). La cellule eucaryote est une structure hautement compartimentée, et à ce titre la compartimentalisation des processus cataboliques et anaboliques est une part intégrante de la gestion des voies métaboliques. Dans cet ensemble, la mitochondrie est un organite clef, qui abrite l'oxydation des lipides, le cycle de l'acide citrique (CAC) et la respiration cellulaire. De cette manière, la fonction mitochondriale est un élément crucial dans le maintien de l'état énergétique et d'oxydation-réduction de la cellule dans une gamme physiologique, ainsi que dans la régulation de l'activité du métabolisme du glucose et des lipides pour l'homéostasie du corps entier. La fonction mitochondriale est directement régulée par son interaction avec le réticulum endoplasmique (RE) via des zones de proximité entre les organites appelées Mitochondria-Associated-Endoplasmic-Reticulum-Membranes ou MAM. Dans ce contexte, j'ai participé au cours de mon travail de thèse à une étude qui a montré l'importance des interactions mitochondrie-RE dans la signalisation de l'insuline et mise en lumière la perturbation des MAM comme acteur principal dans l'IRH. De plus, j'ai étudié la régulation des MAM dans le contexte physiologique de la transition nutritionnelle dans le foie sain et insulino-résistant (IR) / The liver is an essential organ in the control of energetic homeostasis of the human body. Particularly, hepatic metabolism is crucial for glucose and lipid homeostasis. Catabolism and anabolism of both substrates are in constant equilibrium and synergically regulated in regard of nutrient availability and energetic demand. Disruption of this equilibrium, especially in the case of obesity, can lead to hepatic accumulation of lipids, which is a major cause of hepatic insulin resistance (HIR) leading to chronic hyperglycaemia and type 2 diabetes (T2D). The eukaryotic cell is a highly compartmented structure, and in this respect compartmentation of anabolic and catabolic processes is an integral part of managing metabolic pathways together. In this context, the mitochondrion is a key organelle, housing oxidation of lipids, the tricarboxylic acid (TCA) cycle and cellular respiration. In this way, mitochondrial function is a crucial element in maintaining energetic and reductionoxidation state of the cell within physiological ranges, as well in regulating the proper activity of glucose and lipid metabolism for the all body homeostasis. Mitochondrial function is directly regulated by its interaction with the endoplasmic reticulum (ER) via proximity points between the organelles called Mitochondria-Associated-ER-Membranes (MAM). In this context I have participated during my Ph.D. in a work that has shown the importance of mitochondria-ER interactions in insulin signalling and highlighted MAM disruption as a main actor in HIR. Furthermore, I have studied the regulation of MAM in the physiological context of nutritional transition in the healthy and insulin resistant (IR) liver. Particularly, we have shown that MAM disruption induces impaired insulin signalling, while their reinforcement protects against its appearance and restore insulin sensitivity in lipid-induced IR condition. Moreover, we have pointed out a consistent decrease of MAM quantity in the IR liver of ob/ob, high-fat high-sucrose diet (HFHSD) and Cyclophilin D - knock-out (CypD-KO) mice
|
Page generated in 0.1098 seconds