61 |
Paper Spray - Mass Spectrometry: Investigation of Sampling Devices for Illicit Drug Detection and QuantificationChau Bao Nguyen (11178123) 06 August 2021 (has links)
Different sampling devices for paper spray - mass spectrometry (PS - MS) were investigated to improve the assay’s simplicity and sensitivity over traditional approaches. In the first one, pressure-sensitive adhesive paper was used as both sampling tool to collect drug residues on surfaces and paper substrate in PS - MS analysis. This method showed a significant improvement in drug collection on surfaces leading to low nano-gram level detection limits. Other sampling device being investigated was snap-in solid-phase extraction column, which demonstrated the ability to detect trace amounts of drugs in plasma while allowed easy transportation and the use of PS - MS automated system.
|
62 |
NANOPLASMONIC EFFICACY OF GOLD TRIANGULAR NANOPRISMS IN MEASUREMENT SCIENCE: APPLICATIONS RANGING FROM BIOMEDICAL TO FORENSIC SCIENCESThakshila Liyanage (8098115) 11 December 2019 (has links)
<p>Noble metal nanostructures display collective
oscillation of the surface conduction electrons upon light irradiation as a
form of localized surface plasmon resonance (LSPR) properties. Size, shape and
the refractive index of surrounding environment are the key features that
controls the LSPR properties. Surface passivating ligands have the ability to
modify the charge density of nanostructures to allow resonant wavelength to
match that of the incident light, a phenomenon called “plasmoelectric effect,”.
According to the drude model Red and blue shifts of LSPR peak of nanostructures
are observed in the event of reducing and increasing charge density,
respectively. However, herein we report unusual LSPR properties of gold triangular
nanoprisms (Au TNPs) upon functionalization with para-substituted thiophenols
(X-Ph-SH, X = -NH<sub>2</sub>, -OCH<sub>3</sub>, -CH<sub>3</sub>, -H, -Cl, -CF<sub>3</sub>,
and -NO<sub>2</sub>). Accordingly, we hypothesized that an appropriate energy
level alignment between the Au Fermi energy and the HOMO or LUMO of ligands
allows delocalization of surface plasmon excitation at the hybrid
inorganic-organic interface, and thus provides a thermodynamically driven
plasmoelectric effect. We further validated our hypothesis by calculating the
HOMO and LUMO levels and also work function changes of Au TNPs upon
functionalization with para substituted thiol. We further utilized our unique
finding to design ultrasensitive plasmonic substrate for biosensing of cancer
microRNA in bladder cancer and owe to unpresidential sensitivity of the
developed Au TNPs based LSPR sensor, for the first time we have been utilized
to analysis the tumor suppressor microRNA for more accurate diagnosis of BC.
Additionally, we have been advancing our sensing platform to mitigate the false
positive and negative responses of the sensing platform using surface enhanced
fluorescence technique. This noninvasive, highly sensitive,
highly specific, also does not have false positives technique provide strong
key to detect cancer at very early stage, hence increase the cancer survival
rate. Moreover, the electromagnetic
field enhancement of Surface-Enhanced Raman Scattering (SERS) and other related
surface-enhanced spectroscopic processes resulted from the LSPR property. This
dissertation describes the design and development of entirely
new SERS nanosensors using flexible SERS substrate based on unique LSPR
property of Au TNPs and developed sensors shows excellent SERS activity
(enhancement factor = ~6.0 x 106) and limit of detection (as low as 56
parts-per-quadrillions) with high selectivity by chemometric analyses among
three commonly used explosives (TNT, RDX, and PETN). Further we achieved the
programable self-assembly of Au TNPs using molecular tailoring to form a 3D
supper lattice array based on the substrate effect. Here we achieved the
highest reported sensitivity for potent drug analysis, including opioids and
synthetic cannabinoids from human plasma obtained from the emergency room. This
exquisite sensitivity is mainly due to the two reasons, including molecular
resonance of the adsorbate molecules and the plasmonic coupling among the
nanoparticles. Altogether we are highly optimistic that our research will not
only increase the patient survival rate through early detection of cancer but
also help to battle the “war against drugs” that together is expected to
enhance the quality of human life. </p>
<p> </p>
|
63 |
Advances in gas chromatography, thermolysis, mass spectrometry, and vacuum ultraviolet spectrometryAshur Scott Rael (10701216) 11 May 2021 (has links)
In the area of forensic chemistry, improved or new analysis methods are continually being investigated. One common and powerful technique used in forensic chemistry is wall-coated open-tubular column (WCOT) gas chromatography with electron ionization single quadrupole mass spectrometry (GC-MS). Improvements to and effectiveness of alternatives to this instrumental platform were explored in an array of parallel inquiries. The areas studied included the column for the chromatographic separation, the universal detection method employed, and the fragmentation method used to enhance molecular identification. <br><br>Superfine-micropacked capillary (SFµPC) columns may provide an alternative to commercial packed GC columns and WCOT GC columns that combines the benefits of the larger sample capacity of packed columns and the benefits of the excellent separation capabilities and mass spectrometry (MS) flow rate compatibility of WCOT columns. SFµPC columns suffer from high inlet pressure requirements and prior reported work has required specialized instrumentation for their use. Fabrication of and chromatography with SFµPC GC columns was successfully achieved with typical GC-MS instrumentation and within the flow rate limit of a MS. Additionally, the use of higher viscosity carrier gasses was demonstrated to reduce the required inlet pressure for SFµPC GC columns.<br><br>Recently, a new vacuum ultraviolet spectrometer (VUV) universal detector has been commercialized for GC. The ability of VUV detectors to acquire absorbance spectra from 125 nm to 430 nm poses a potential alternative to MS. As such, GC-VUV provides an exciting potential alternative approach to achieving excellent quantitative and qualitative analysis across a wide range of analytes. The performance of VUV and MS detectors for forensic analysis in terms of quantitative and qualitative analysis was compared. Analysis of alkylbenzenes in ignitable liquids was explored, which can be important evidence from suspected arson fires and are difficult to differentiate with MS. The VUV detector was found to have superior specificity and comparable sensitivity to the MS detector in scan mode.<br><br>Addition of thermolysis (Th) as an orthogonal fragmentation pathway provides the opportunity to increase the differences between MS fragmentation patterns. Fragmentation has been widely established to aid in identification of molecules with MS by providing characteristic fragments at characteristic relative abundances. However, molecules with very similar structures do not result in sizable spectral differences in all cases with typical MS fragmentation techniques. A series of Th units were fabricated and integrated into GC-Th-MS instruments. Th-MS was conducted with the thermally labile nitrate esters across a range of instrumentation and thermal conditions.<br>
|
64 |
AMBIENT IONIZATION MASS SPECTROMETRY FOR HIGH THROUGHPUT BIOANALYSISNicolas Mauricio Morato Gutierrez (16635960) 25 July 2023 (has links)
<p>The rapid analysis of complex samples using mass spectrometry (MS) provides valuable information in both point-of-care (e.g. drug testing) and laboratory-based applications, including the generation of spectral libraries for classification of biosamples, the identification of biomarkers through large-scale studies, as well as the synthesis and bioactivity assessments of large compound sets necessary for drug discovery. In all these cases, the inherent speed of MS is attractive, but rarely fully utilized due to the widespread use of sample purification techniques prior to analysis. Ambient ionization methodologies can help circumvent this drawback by facilitating high-throughput qualitative and quantitative analysis directly from the complex samples without any need for work-up. For instance, the use of swabs or paper substrates allows for rapid identification, quantification, and confirmation, of drugs of abuse from biofluids or surfaces of forensic interest in a matter of minutes, as described in the first two chapters of this dissertation. Faster analysis can be achieved using an automated desorption electrospray ionization (DESI) platform which allows for the rapid and direct screening of complex-sample microarrays with throughputs better than 1 sample per second, giving access to rich spectral information from tens of thousands of samples per day. The development of the bioanalytical capabilities of this platform, particularly within the context of drug discovery (e.g. bioactivity assays, biosample analysis), is described across most other chapters of this dissertation. The use of DESI, a contactless ambient ionization method developed in our laboratory and whose 20 years of history are overviewed in the introduction of this document, provides an additional advantage as the secondary microdroplets generated through the DESI process act as reaction vessels that can accelerate organic reactions by up to six orders of magnitude, facilitating on-the-fly synthesis of new compounds from arrays of starting materials. Unique implications of this microdroplet chemistry in the prebiotic synthesis of peptides and spontaneous redox chemistry at air-solution interfaces, together with its practical applications to the synthesis of new drug molecules, are also overviewed. The success obtained with the first automated DESI-MS system, developed within the DARPA Make It program, led to increased interest in a new-generation platform which was designed over the past year, as overviewed in the last section of this dissertation, and which is currently being installed for validation prior to the transfer of the technology to NCATS, where we anticipate it will make a significant impact through the consolidation and acceleration of the early drug discovery workflow.</p>
|
65 |
Advances in Gas Chromatography and Vacuum UV Spectroscopy: Applications to Fire Debris Analysis & Drugs of AbuseZackery Ray Roberson (9708611) 07 January 2021 (has links)
In forensic chemistry, a quicker and more accurate analysis of a sample is always being pursued. Speedy analyses allow the analyst to provide quick turn-around times and potentially decrease back-logs that are known to be a problem in the field. Accurate analyses are paramount with the futures and lives of the accused potentially on the line. One of the most common methods of analysis in forensic chemistry laboratories is gas chromatography, chosen for the relative speed and efficiency afforded by this method. Two major routes were attempted to further improve on gas chromatography applications in forensic chemistry.<br> The first route was to decrease separation times for analysis of ignitable liquid residues by using micro-bore wall coated open-tubular columns. Micro-bore columns are much shorter and have higher separation efficiencies than the standard columns used in forensic chemistry, allowing for faster analysis times while maintaining the expected peak separation. Typical separation times for fire debris samples are between thirty minutes and one hour, the micro-bore columns were able to achieve equivalent performance in three minutes. The reduction in analysis time was demonstrated by analysis of ignitable liquid residues from simulated fire debris exemplars.<br> The second route looked at a relatively new detector for gas chromatography known as a vacuum ultraviolet (VUV) spectrophotometer. The VUV detector uses traditional UV and far-ultraviolet light to probe the pi and sigma bonds of the gas phase analytes as well as Rydberg traditions to produce spectra that are nearly unique to a compound. Thus far, the only spectra that were not discernable were from enantiomers, otherwise even diastereomers have been differentiated. The specificity attained with the VUV detector has achieved differentiation of compounds that mass spectrometry, the most common detection method for chromatography in forensic chemistry labs, has difficulty distinguishing. This specificity has been demonstrated herein by analyzing various classes of drugs of abuse and applicability to “real world” samples has been demonstrated by analysis of de-identified seized samples.<br>
|
Page generated in 0.107 seconds