• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Type-alpha DPLs

Arkoudas, Konstantine 05 October 2001 (has links)
This paper introduces Denotational Proof Languages (DPLs). DPLs are languages for presenting, discovering, and checking formal proofs. In particular, in this paper we discus type-alpha DPLs---a simple class of DPLs for which termination is guaranteed and proof checking can be performed in time linear in the size of the proof. Type-alpha DPLs allow for lucid proof presentation and for efficient proof checking, but not for proof search. Type-omega DPLs allow for search as well as simple presentation and checking, but termination is no longer guaranteed and proof checking may diverge. We do not study type-omega DPLs here. We start by listing some common characteristics of DPLs. We then illustrate with a particularly simple example: a toy type-alpha DPL called PAR, for deducing parities. We present the abstract syntax of PAR, followed by two different kinds of formal semantics: evaluation and denotational. We then relate the two semantics and show how proof checking becomes tantamount to evaluation. We proceed to develop the proof theory of PAR, formulating and studying certain key notions such as observational equivalence that pervade all DPLs. We then present NDL, a type-alpha DPL for classical zero-order natural deduction. Our presentation of NDL mirrors that of PAR, showing how every basic concept that was introduced in PAR resurfaces in NDL. We present sample proofs of several well-known tautologies of propositional logic that demonstrate our thesis that DPL proofs are readable, writable, and concise. Next we contrast DPLs to typed logics based on the Curry-Howard isomorphism, and discuss the distinction between pure and augmented DPLs. Finally we consider the issue of implementing DPLs, presenting an implementation of PAR in SML and one in Athena, and end with some concluding remarks.
2

Proofs of Correctness for Three Decentralized Authentication Protocols Using Strand Spaces

Vankamamidi, Pavan Kumar 27 May 2011 (has links) (PDF)
Security is a major concern is today's online world. As online activities become increasingly sensitive, service providers rely on security protocols to ensure confidentiality, integrity and authentication of their users and data. Greater assurance is provided when these protocols are verified to be correct. Strand Spaces is a method to formally analyze security protocols. The arguments are based on the messages being transmitted and received while assuming that the underlying cryptographic primitives are secure. This thesis demonstrates that the protocols Luau, pwdArmor and Kiwi are secure using Strand Spaces methodology.
3

Étude formelle d'algorithmes efficaces en algèbre linéaire / Formal study of efficient algorithms in linear algebra

Dénès, Maxime 20 November 2013 (has links)
Les méthodes formelles ont atteint un degré de maturité conduisant à la conception de systèmes de preuves généralistes, permettant à la fois de vérifier la correction de systèmes logiciels complexes ou de formaliser des mathématiques avancées. Mais souvent, l'accent est mis davantage sur la facilité du raisonnement sur les programmes plutôt que sur leur exécution efficace. L'antagonisme entre ces deux aspects est particulièrement sensible pour les algorithmes de calcul formel, dont la correction repose habituellement sur des concepts mathématiques élaborés, mais dont l'efficacité pratique est une préoccupation importante. Cette thèse développe des approches à l'étude formelle et l'exécution efficace de programmes en théorie des types, et plus précisément dans l'assistant à la preuve \coq{}. Dans un premier temps, nous présentons un environnement d'exécution permettant de compiler en code natif de tels programmes tout en conservant la généralité et l'expressivité du formalisme. Puis, nous nous intéressons aux représentations de données et plus particulièrement au lien formellement vérifié et automatisé entre représentations adaptées aux preuves ou au calcul. Ensuite, nous mettons à profit ces techniques pour l'étude d'algorithmes en algèbre linéaire, comme le produit matriciel de Strassen, le procédé d'élimination de Gauss ou la mise en forme canonique de matrices, dont notamment la forme de Smith pour les matrices sur un anneau euclidien. Enfin, nous ouvrons le champ des applications à la formalisation et au calcul certifié des groupes d'homologie de complexes simpliciaux issus d'images numériques. / Formal methods have reached a degree of maturity leading to the design of general-purpose proof systems, enabling both to verify the correctness of complex software systems and to formalize advanced mathematics. However, the ease of reasoning on programs is often emphasized more than their efficient execution. The antagonism between these two aspects is particularly significant for computer algebra algorithms, whose correctness usually relies on elaborate mathematical concepts, but whose practical efficiency is an important matter of concern. This thesis develops approaches to the formal study and the efficient execution of programs in type theory, and more precisely in the proof assistant \coq{}. In a first part, we introduce a runtime environment enabling the native code compilation of such programs while retaining the generality and expressiveness of the formalism. Then, we focus on data representations and in particular on the formally verified and automatized link between proof-oriented and computation-oriented representations. Then, we take advantage of these techniques to study linear algebra algorithms, like Strassen's matrix product, Gaussian elimination or matrix canonical forms, including the Smith normal form for matrices over a Euclidean ring. Finally, we open the field of applications to the formalization and certified computation of homology groups of simplicial complexes arising from digital images.
4

Contributions à la vérification formelle d'algorithmes arithmétiques / Contributions to the Formal Verification of Arithmetic Algorithms

Martin-Dorel, Erik 26 September 2012 (has links)
L'implantation en Virgule Flottante (VF) d'une fonction à valeurs réelles est réalisée avec arrondi correct si le résultat calculé est toujours égal à l'arrondi de la valeur exacte, ce qui présente de nombreux avantages. Mais pour implanter une fonction avec arrondi correct de manière fiable et efficace, il faut résoudre le «dilemme du fabricant de tables» (TMD en anglais). Deux algorithmes sophistiqués (L et SLZ) ont été conçus pour résoudre ce problème, via des calculs longs et complexes effectués par des implantations largement optimisées. D'où la motivation d'apporter des garanties fortes sur le résultat de ces pré-calculs coûteux. Dans ce but, nous utilisons l'assistant de preuves Coq. Tout d'abord nous développons une bibliothèque d'«approximation polynomiale rigoureuse», permettant de calculer un polynôme d'approximation et un intervalle bornant l'erreur d'approximation à l'intérieur de Coq. Cette formalisation est un élément clé pour valider la première étape de SLZ, ainsi que l'implantation d'une fonction mathématique en général (avec ou sans arrondi correct). Puis nous avons implanté en Coq, formellement prouvé et rendu effectif 3 vérifieurs de certificats, dont la preuve de correction dérive du lemme de Hensel que nous avons formalisé dans les cas univarié et bivarié. En particulier, notre «vérifieur ISValP» est un composant clé pour la certification formelle des résultats générés par SLZ. Ensuite, nous nous sommes intéressés à la preuve mathématique d'algorithmes VF en «précision augmentée» pour la racine carré et la norme euclidienne en 2D. Nous donnons des bornes inférieures fines sur la plus petite distance non nulle entre sqrt(x²+y²) et un midpoint, permettant de résoudre le TMD pour cette fonction bivariée. Enfin, lorsque différentes précisions VF sont disponibles, peut survenir le phénomène de «double-arrondi», qui peut changer le comportement de petits algorithmes usuels en arithmétique. Nous avons prouvé en Coq un ensemble de théorèmes décrivant le comportement de Fast2Sum avec double-arrondis. / The Floating-Point (FP) implementation of a real-valued function is performed with correct rounding if the output is always equal to the rounding of the exact value, which has many advantages. But for implementing a function with correct rounding in a reliable and efficient manner, one has to solve the ``Table Maker's Dilemma'' (TMD). Two sophisticated algorithms (L and SLZ) have been designed to solve this problem, relying on some long and complex calculations that are performed by some heavily-optimized implementations. Hence the motivation to provide strong guarantees on these costly pre-computations. To this end, we use the Coq proof assistant. First, we develop a library of ``Rigorous Polynomial Approximation'', allowing one to compute an approximation polynomial and an interval that bounds the approximation error in Coq. This formalization is a key building block for verifying the first step of SLZ, as well as the implementation of a mathematical function in general (with or without correct rounding). Then we have implemented, formally verified and made effective 3 interrelated certificates checkers in Coq, whose correctness proof derives from Hensel's lemma that we have formalized for both univariate and bivariate cases. In particular, our ``ISValP verifier'' is a key component for formally verifying the results generated by SLZ. Then, we have focused on the mathematical proof of ``augmented-precision'' FP algorithms for the square root and the Euclidean 2D norm. We give some tight lower bounds on the minimum non-zero distance between sqrt(x²+y²) and a midpoint, allowing one to solve the TMD for this bivariate function. Finally, the ``double-rounding'' phenomenon can typically occur when several FP precision are available, and may change the behavior of some usual small FP algorithms. We have formally verified in Coq a set of results describing the behavior of the Fast2Sum algorithm with double-roundings.

Page generated in 0.0647 seconds