• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude théorique et numérique des équations différentielles stochastiques rétrogrades

Richou, Adrien 30 November 2010 (has links) (PDF)
Dans un premier temps, nous étudions une nouvelle classe d'équations différentielles stochastiques rétrogrades (notées EDSRs) qui sont reliées à des conditions de Neumann semi-linéaires relatives à des phénomènes ergodiques. La particularité de ces problèmes est que la constante ergodique apparaît dans la condition au bord. Nous étudions l'existence et l'unicité de solutions pour de telles EDSRs ergodiques ainsi que le lien avec les équations aux dérivées partielles et nous appliquons ces résultats à des problèmes de contrôle ergodique optimal. Dans une deuxième partie nous généralisons des travaux de P. Briand et Y. Hu publiés en 2008. Ces derniers ont prouvé un résultat d'unicité pour les solutions d'EDSRs quadratiques de générateur convexe et de condition terminale non bornée ayant tous leurs moments exponentiels finis. Nous prouvons que ce résultat d'unicité reste vrai pour des solutions qui admettent uniquement certains moments exponentiels finis, ces moments étant reliés de manière naturelle à ceux présents dans le théorème d'existence. Nous améliorons aussi la formule de Feynman-Kac non linéaire prouvée par P. Briand et Y. Hu. Enfin, nous nous intéressons à la résolution numérique d'EDSRs quadratiques markoviennes dont la condition terminale est bornée. Nous estimons dans un premier temps des bornes déterministes sur le processus Z. Nous donnons ensuite un nouveau schéma de discrétisation en temps dont la particularité est que la grille de discrétisation est non uniforme. Enfin nous obtenons une vitesse de convergence pour ce schéma. Par ailleurs, quelques simulations numériques permettent d'étudier l'efficacité de notre nouveau schéma dans un cadre pratique.
2

Voyage au coeur des EDSRs du second ordre et autres problèmes contemporains de mathématiques financières.

Possamaï, Dylan 12 December 2011 (has links) (PDF)
Cette thèse présente deux principaux sujets de recherche indépendants, le dernier étant décliné sous la forme de deux problèmes distincts. Dans toute la première partie de la thèse, nous nous intéressons à la notion d'équations différentielles stochastiques rétrogrades du second ordre (dans la suite 2EDSR), introduite tout d'abord par Cheredito, Soner, Touzi et Victoir puis reformulée récemment par Soner, Touzi et Zhang. Nous prouvons dans un premier temps une extension de leurs résultats d'existence et d'unicité lorsque le générateur considéré est seulement continu et à croissance linéaire. Puis, nous poursuivons notre étude par une nouvelle extension au cas d'un générateur quadratique. Ces résultats théoriques nous permettent alors de résoudre un problème de maximisation d'utilité pour un investisseur dans un marché incomplet, à la fois car des contraintes sont imposées sur ses stratégies d'investissement, et parce que la volatilité du marché est supposée être inconnue. Nous prouvons dans notre cadre l'existence de stratégies optimales, caractérisons la fonction valeur du problème grâce à une EDSR du second ordre et résolvons explicitement certains exemples qui nous permettent de mettre en exergue les modifications induites par l'ajout de l'incertitude de volatilité par rapport au cadre habituel. Nous terminons cette première partie en introduisant la notion d'EDSR du second ordre avec réflexion sur un obstacle. Nous prouvons l'existence et l'unicité des solutions de telles équations, et fournissons une application possible au problème de courverture d'options Américaines dans un marché à volatilité incertaine. Le premier chapitre de la seconde partie de cette thèse traite d'un problème de pricing d'options dans un modèle où la liquidité du marché est prise en compte. Nous fournissons des développements asymptotiques de ces prix au voisinage de liquidité infinie et mettons en lumière un phénomène de transition de phase dépendant de la régularité du payoff des options considérées. Quelques résultats numériques sont également proposés. Enfin, nous terminons cette thèse par l'étude d'un problème Principal/Agent dans un cadre d'aléa moral. Une banque (qui joue le rôle de l'agent) possède un certain nombre de prêts dont elle est prête à échanger les intérêts contre des flux de capitaux. La banque peut influencer les probabilités de défaut de ces emprunts en exerçant ou non une activité de surveillance coûteuse. Ces choix de la banque ne sont connus que d'elle seule. Des investisseurs (qui jouent le rôle de principal) souhaitent mettre en place des contrats qui maximisent leur utilité tout en incitant implicitement la banque à exercer une activité de surveillance constante. Nous résolvons ce problème de contrôle optimal explicitement, décrivons le contrat optimal associé ainsi que ses implications économiques et fournissons quelques simulations numériques.

Page generated in 0.0866 seconds