491 |
Didaktické využití stavebnice LEGO Mindstorms ve výuce matematiky se zaměřením na fraktály / LEGO Mindstorms: Didactic utilization in mathematics with a focus on fractalsČadek, Jan January 2016 (has links)
TITLE: LEGO Mindstorms: Didactic utilization in mathematics with a focus on fractals ABSTRACT: The objective of this thesis is to determine whether the teaching of fractal geometry supported by computer and robotic LEGO Mindstorms NXT has its place in the education of primary and secondary schools pupils in the Czech Republic. The theoretical part focuses on key topics and personalities closely connected to fractal geometry problematics. It provides a brief historical overview of the fractal geometry development, its potential use in teaching mathematics (with reference to Turkish curriculum documents), and a description of LEGO Mindstorms NXT which can well serve as a manual for teachers and pupils. The practical part contains instructions for building a robotic turtle as well as a proposal of teaching block aimed to support pupils' algorithmic and geometric thinking including key competencies. Quantitative comparison of the results taken from Turkish studies and evaluation of the project by the author and pupils are a part of the experiment as well. KEYWORDS: LEGO Mindstorms NXT, fractal, programming, Logo, learning by doing, turtle, Papert, L-system, microworlds
|
492 |
Novel Applications Of Fractal Compression And Wavelet Analysis For Partial Discharge Pattern ClassificationLalitha, E M 05 1900 (has links) (PDF)
No description available.
|
493 |
Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic SystemsSchönwetter, Moritz 17 January 2017 (has links) (PDF)
Fractals have long been recognized to be a characteristic feature arising from chaotic dynamics; be it in the form of strange attractors, of fractal boundaries around basins of attraction, or of fractal and multifractal distributions of asymptotic measures in open systems.
In this thesis we study fractal and multifractal measure distributions in leaky Hamiltonian systems. Leaky systems are created by introducing a fully or partially transparent hole in an otherwise closed system, allowing trajectories to escape or lose some of their intensity. This dynamics results in intricate (multi)fractal distributions of the surviving trajectories. These systems are suitable models for experimental setups such as optical microcavities or microwave resonators. In this thesis we perform an improved investigation of the fractality in these systems using the concept of effective dimensions. They are defined as the dimensions far from the usually considered asymptotics of infinite evolution time $t$, infinite sample size $S$, and infinite resolution (infinitesimal box-size $varepsilon$).
Yet, as we show, effective dimensions can be considered as intrinsic to the dynamics of the system. We present a detailed discussion of the behaviour of the numerically observed dimension $D_mathrm{obs}(S,t,varepsilon)$. We show that the three parameters can be expressed in terms of limiting length scales that define the parameter ranges in which $D_mathrm{obs}(S,t,varepsilon)$ is an effective dimension of the system. We provide dynamical and statistical arguments for the dependence of these scales on $S$, $t$, and $varepsilon$ in strongly chaotic systems and show that the knowledge of the scales allows us to define meaningful effective dimensions. We apply our results to three main fields.
In the context of numerical algorithms to calculate dimensions, we show that our findings help to numerically find the range of box sizes leading to accurate results. We further show that they allow us to minimize the computational cost by providing estimates of the required sample-size and iteration time needed. A second application field of our results is systems exhibiting non-trivial dependencies of the effective dimension $D_mathrm{eff}$ on $t$ and $varepsilon$. We numerically explore this in weakly chaotic leaky systems.
There, our findings provide insight into the dynamics of the systems, since deviations from our predictions based on strongly chaotic systems at a given parameter range are a sign that the stickiness inherent to such systems needs to be taken into account in that range. Lastly, we show that in quantum analogues of chaotic maps with a partial leak, a related effective dimension can be used to explain the numerically observed deviation from the predictions provided by the fractal Weyl law for systems with fully absorbing leaks. Here, we provide an analytical description of the expected scaling based on the classical dynamics of the system and compare it with numerical results obtained in the studied quantum maps. / Es ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chaotischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Begrenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betrachten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen. Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transparentes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet.
In dieser Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimensionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher Iterationszeit $t$, unendlicher Stichprobengröße $S$ und unendlicher Auflösung, also infinitesimaler Boxgröße $varepsilon$ auftreten. Dennoch können effektive Dimensionen, wie wir zeigen, als der Dynamik des Systems inhärent angesehen werden.
Wir führen eine detaillierte Diskussion der numerisch beobachteten Dimension $D_mathrm{obs}(S,t,varepsilon)$ durch und zeigen, dass die drei Parameter $S$, $t$ und $varepsilon$ in Form grenzwertiger Längenskalen ausgedrückt werden können, die die Parameterbereiche definieren, in denen $D_mathrm{obs}(S,t,varepsilon)$ den Wert einer effektiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längenskalen in stark chaotischen Systemen als Funktionen von $S$, $t$ und $varepsilon$ anhand statistischer Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver Dimensionen ermöglicht.
Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen an:
Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass unsere Ergebnisse es erlauben, diejenigen $varepsilon$-Bereiche zu finden, die zu korrekten Ergebnissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Iterationszeit ermöglichen.
Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine nichttriviale Abhängigkeit von $D_mathrm{eff}$ von $t$ und $varepsilon$ auszeichnen. Hier ermöglichen unsere Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorhersagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind, dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant ist.
Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um die numerisch beobachteten Abweichungen vom fraktalen weyl'schen Gesetz für völlig transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine analytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die wir über die Quantenabbildungen gewonnen haben.
|
494 |
Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic SystemsSchönwetter, Moritz 17 January 2017 (has links)
Fractals have long been recognized to be a characteristic feature arising from chaotic dynamics; be it in the form of strange attractors, of fractal boundaries around basins of attraction, or of fractal and multifractal distributions of asymptotic measures in open systems.
In this thesis we study fractal and multifractal measure distributions in leaky Hamiltonian systems. Leaky systems are created by introducing a fully or partially transparent hole in an otherwise closed system, allowing trajectories to escape or lose some of their intensity. This dynamics results in intricate (multi)fractal distributions of the surviving trajectories. These systems are suitable models for experimental setups such as optical microcavities or microwave resonators. In this thesis we perform an improved investigation of the fractality in these systems using the concept of effective dimensions. They are defined as the dimensions far from the usually considered asymptotics of infinite evolution time $t$, infinite sample size $S$, and infinite resolution (infinitesimal box-size $varepsilon$).
Yet, as we show, effective dimensions can be considered as intrinsic to the dynamics of the system. We present a detailed discussion of the behaviour of the numerically observed dimension $D_mathrm{obs}(S,t,varepsilon)$. We show that the three parameters can be expressed in terms of limiting length scales that define the parameter ranges in which $D_mathrm{obs}(S,t,varepsilon)$ is an effective dimension of the system. We provide dynamical and statistical arguments for the dependence of these scales on $S$, $t$, and $varepsilon$ in strongly chaotic systems and show that the knowledge of the scales allows us to define meaningful effective dimensions. We apply our results to three main fields.
In the context of numerical algorithms to calculate dimensions, we show that our findings help to numerically find the range of box sizes leading to accurate results. We further show that they allow us to minimize the computational cost by providing estimates of the required sample-size and iteration time needed. A second application field of our results is systems exhibiting non-trivial dependencies of the effective dimension $D_mathrm{eff}$ on $t$ and $varepsilon$. We numerically explore this in weakly chaotic leaky systems.
There, our findings provide insight into the dynamics of the systems, since deviations from our predictions based on strongly chaotic systems at a given parameter range are a sign that the stickiness inherent to such systems needs to be taken into account in that range. Lastly, we show that in quantum analogues of chaotic maps with a partial leak, a related effective dimension can be used to explain the numerically observed deviation from the predictions provided by the fractal Weyl law for systems with fully absorbing leaks. Here, we provide an analytical description of the expected scaling based on the classical dynamics of the system and compare it with numerical results obtained in the studied quantum maps. / Es ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chaotischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Begrenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betrachten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen. Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transparentes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet.
In dieser Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimensionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher Iterationszeit $t$, unendlicher Stichprobengröße $S$ und unendlicher Auflösung, also infinitesimaler Boxgröße $varepsilon$ auftreten. Dennoch können effektive Dimensionen, wie wir zeigen, als der Dynamik des Systems inhärent angesehen werden.
Wir führen eine detaillierte Diskussion der numerisch beobachteten Dimension $D_mathrm{obs}(S,t,varepsilon)$ durch und zeigen, dass die drei Parameter $S$, $t$ und $varepsilon$ in Form grenzwertiger Längenskalen ausgedrückt werden können, die die Parameterbereiche definieren, in denen $D_mathrm{obs}(S,t,varepsilon)$ den Wert einer effektiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längenskalen in stark chaotischen Systemen als Funktionen von $S$, $t$ und $varepsilon$ anhand statistischer Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver Dimensionen ermöglicht.
Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen an:
Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass unsere Ergebnisse es erlauben, diejenigen $varepsilon$-Bereiche zu finden, die zu korrekten Ergebnissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Iterationszeit ermöglichen.
Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine nichttriviale Abhängigkeit von $D_mathrm{eff}$ von $t$ und $varepsilon$ auszeichnen. Hier ermöglichen unsere Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorhersagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind, dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant ist.
Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um die numerisch beobachteten Abweichungen vom fraktalen weyl'schen Gesetz für völlig transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine analytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die wir über die Quantenabbildungen gewonnen haben.
|
495 |
Hausdorff Dimension of Shrinking-Target Sets Under Non-Autonomous SystemsLopez, Marco Antonio 08 1900 (has links)
For a dynamical system on a metric space a shrinking-target set consists of those points whose orbit hit a given ball of shrinking radius infinitely often. Historically such sets originate in Diophantine approximation, in which case they describe the set of well-approximable numbers. One aspect of such sets that is often studied is their Hausdorff dimension. We will show that an analogue of Bowen's dimension formula holds for such sets when they are generated by conformal non-autonomous iterated function systems satisfying some natural assumptions.
|
496 |
Kónický Sierpinského monopól / Conical Sierpinski monopoleVšetula, Petr January 2010 (has links)
The thesis deals with numerical modeling of planar Sierpinski monopole and modified Sierpinski monopole, outgoing from Sierpinski structure. Next, it focuses on modeling of the conical modified monopole and conical Sierpinski monopole created by transferring of modified structure to conical surface. The properties of these multi-band antennas are verified by simulations in CST Microwave Studio 2009 and compared with the results published in available literature. The conical Sierpinski monopole is then optimized according to specified criteria. The optimized antenna is designed and its properties are experimentally verified.
|
497 |
Planární fraktální filtr na substrátu s porušenou zemí / Planar fractal filter on defected ground substrateKufa, Martin January 2012 (has links)
The diploma thesis is focused on the design of planar filters combining fractal layouts and defected ground substrates. The diploma thesis can be divided into three main parts. First, basic knowledge about fractals is presented (creation of Minkowski Island and Koch loop, e.g.). Then, the principle of defected ground structure is described, and a combination of fractal motives with a defected ground structure is briefly introduced. Properties of investigated structures are verified by CST Microwave Studio and Ansoft HFSS. Second, different defected ground structures under the 50 transmission line are designed, and conventional equivalent filters are created. Filters are simulated and compared. In final, the investigated filters are recalculated for the substrate Arlon 25N, simulated, manufactured, measured and confronted with a conventional filter on the defected ground substrate.
|
498 |
Vlastnosti fraktálních kapacitorů / Fractal capacitors propertiesChvíla, Ladislav January 2012 (has links)
This work is focused on computer simulations of fractal capacitors. The geometry of capacitors and its influence is investigated. Simulations are realized in programs Matlab, SolidWorks and Comsol Multiphysics. There are also several specific examples of different geometrics of capacitors their comparisons and assessment.
|
499 |
Kaskádový Sierpinského monopól / Cascade Sierpinski monopoleKadlček, Jiří January 2013 (has links)
This master’s thesis describes the theoretical analysis of the Sierpinski triangle structure. On the basis of this structure, a planar version of the Sierpinski monopole is firstly designed. Then, by using a transfer of the planar motive to the conical surface, conical and cascade Sierpinski monopoles are designed. All simulations are calculated by CST Microwave Studio 2011. In the thesis, four types of cascade Sierpinski monopole are proposed. The investigated parameters are reflection coefficient, input impedance, radiation properties, polarization and bandwidth. The attention is primarily focused on the design and experimental verification of the selected conical shape cascade Sierpinski monopole set on the bands GSM 900, GSM 1800 and Wi-fi 2,4 GHz.
|
500 |
Speciální difraktivní prvky - využití fraktálů / Special diffractive element based on fractalsKala, Miroslav January 2009 (has links)
This diploma project is focused on use the fractals in diffractive optical elements. Properties of diffraction patterns of various fractals are investigated. Properties of some simpler non-fractal structures are investigated too. Diffraction patterns are created by computer with program written in Delphi programming language. Potentialities of use the fractals in security optical elements (holograms) and their advantages against the classic non-fractal structures.
|
Page generated in 0.0565 seconds