• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Revealing Secrets of Synaptic Protein Interactions : A Biosensor based Strategy

Seeger, Christian January 2014 (has links)
Protein interactions are the basis of synaptic function, and studying these interactions on a molecular level is crucial for understanding basic brain function, as well as mechanisms underlying neurological disorders. In this thesis, kinetic and mechanistic characterization of synaptic protein interactions was performed by using surface plasmon resonance biosensor technology. Fragment library screening against the reverse transcriptase of HIV was included, as it served as an outlook for future drug discovery against ligand-gated ion channels. The protein-protein interaction studies of postsynaptic Ca2+ -binding proteins revealed caldendrin as a novel binding partner of AKAP79. Caldendrin and calmodulin bind and compete at similar binding sites but their interactions display different mechanisms and kinetics. In contrast to calmodulin, caldendrin binds to AKAP79 both in the presence and absence of Ca2+ suggesting distinct in vivo functional properties of caldendrin and calmodulin. Homo-oligomeric β3 GABAA receptors, although not yet identified in vivo, are candidates for a histamine-gated ion channel in the brain. To aid the identification of the receptor, 51 histaminergic ligands were screened and a unique pharmacology was determined. A further requirement for identifying β3 receptors in the brain, is the availability of specific high-affinity ligands. The developed biosensor assay displayed sufficient sensitivity and throughput for screening for such ligands, as well as for being employed for fragment-based drug discovery. AMPA receptors are excitatory ligand-gated ion channels, involved in synaptic plasticity, and modulated by auxiliary proteins. Previous results have indicated that Noelin1, a secreted glycoprotein, interacts with the AMPA receptor. By using biochemical methods, it was shown that Noelin1 interacts directly with the receptor. The kinetics of the interaction were estimated by biosensor analysis, thereby confirming the interaction and suggesting low nanomolar affinity. The results provide a basis for functional characterization of a novel AMPA receptor protein interaction. The results demonstrate how secrets of synaptic protein interactions and function were revealed by using a molecular based approach. Improving the understanding of such interactions is valuable for basic neuroscience. At the same time, the technical advancements that were achieved to study interactions of ligand-gated ion channels by surface plasmon resonance technology, provide an important tool for discovery of novel therapeutics against these important drug targets.
12

Discovery and evaluation of direct acting antivirals against hepatitis C virus

Abdurakhmanov, Eldar January 2015 (has links)
Until recently, the standard therapy for hepatitis C treatment has been interferon and ribavirin. Such treatment has only 50% efficacy and is not well tolerated. The emergence of new drugs has increased the treatment efficacy to 90%. Despite such an achievement, the success is limited since the virus mutates rapidly, causing the emergence of drug resistant forms. In addition, most new drugs were developed to treat genotype 1 infections. Thus, development of new potent antivirals is needed and drug discovery against hepatitis C is continued. In this thesis, a FRET-based protease assay was used to evaluate new pyrazinone based NS3 protease inhibitors that are structurally different to the newly approved and currently developing drugs. Several compounds in this series showed good potencies in the nanomolar range against NS3 proteases from genotype 1, 3, and the drug resistance variant R155K. We assume that these compounds can be further developed into drug candidates that possess activity against above mentioned enzyme variants. By using SPR technology, we analyzed interaction mechanisms and characteristics of allosteric inhibitors targeting NS5B polymerases from genotypes 1 and 3. The compounds exhibited different binding mechanisms and displayed a low affinity against NS5B from genotype 3. In order to evaluate the activity and inhibitors of the NS5B polymerase, we established an SPR based assay, which enables the monitoring of polymerization and its inhibition in real time. This assay can readily be implemented for the discovery of inhibitors targeting HCV. An SPR based fragment screening approach has also been established. A screen of a fragment library has been performed in order to identify novel scaffolds that can be used as a starting point for development of new allosteric inhibitors against NS5B polymerase. Selected fragments will be further elaborated to generate a new potent allosteric drug candidate. Alternative approaches have successfully been developed and implemented to the discovery of potential lead compounds targeting two important HCV drug targets.
13

Fragment-screening by X-ray crystallography of human vaccinia related kinase 1

Ali Rashid Majid, Yousif January 2020 (has links)
Fragment-screening by X-ray crystallography (XFS) is an expensive and low throughput fragment drug discovery screening method, and it requires a lot of optimization for each protein target. The advantages with this screening method are that it is very sensitive, it directly gives the three-dimensional structure of the protein-fragment complexes, and false positives are rarely obtained. The aim of this project was to help Sprint Bioscience assess if the advantages with XFS outweigh the disadvantages, and if this method should be used as a complement to their differential scanning fluorimetry (DSF) screening method. An XFS campaign was run using the oncoprotein vaccinia related kinase 1 (VRK1) as a target protein to evaluate this screening method. During the development of the XFS campaign, a diverse fragment library was created which consisted of 298 fragments that were all soluble in DMSO at 1 M concentration. The crystallization of the protein VRK1 was also optimized in this project to get a robust, high throughput crystallization set up which generated crystals that diffracted at higher resolution than 2.0 Å when they were not soaked with fragments. The soaking protocol was also optimized in order to reduce both the steps during the screening procedure and mechanical stress caused to the crystals during handling. Lastly, the created fragment library was used in screening VRK1 at 87.5 mM concentration with XFS. 23 fragment hits could be obtained from the X-ray crystallography screening campaign, and the mean resolution of the crystal structures of the protein-fragment complexes was 1.87Å. 11 of the 23 fragment hits were not identified as hits when they were screened against VRK1 using DSF. XFS was deemed as a suitable and efficient screening method to complement DSF since the hit rate was high and fragments hits could be obtained with this method that could not be obtained with DSF. However, in order to use this screening method a lot of time needs to be spent in optimizing the crystal system so it becomes suitable for fragment screening. Sprint Bioscience would therefore need to evaluate the cost/benefit ratio of using this screening method for each new project.
14

Studium ligandů fosfatas z rodiny haloacidních dehalogenas / Study of Ligands for Phosphatases from the Haloacid Dehalogenase Superfamily

Brinsa, Vítězslav January 2020 (has links)
Phosphatases of the haloacid dehalogenase superfamily are one of the cell's tools for dephosphorylation of many diverse endogenous and exogenous compounds. This work is aimed at enzymes Tt82 and cytosolic purine 5'-nucleotidase II (cN-II), two members of this large enzyme superfamily. The Tt82 originates in the hyperthermophilic archaeon Thermococcus thioreducens. Up to date, there is only a small amount of knowledge about properties and biological function of this enzyme. Based on its sequence and structure, it was predicted that the Tt82 should possess a phosphatase catalytic activity. Consequently, potential substrates of the Tt82 were proposed by the molecular docking. In this work, the phosphatase activity of the Tt82 was confirmed together with several of its substrates: AMP, D-glucose 1-phosphate, D-glucose 6-phosphate and p-nitrophenyl phosphate (pNPP). Activity towards AMP and pNPP was then characterized by steady-state kinetics at 37 řC and 60 řC. In consistence with its thermophilic origin, the Tt82 showed markedly higher activity towards both substrates at 60 řC. Nonetheless, the effectivity of the Tt82 catalytic activity towards these substrates was actually very low. This leads to assumption, that the identified substrates are probably not biologically relevant. On the other hand, it is quite...
15

Structural analysis of the potential therapeutic targets from specific genes in Methicillin-resistant Staphylococcus aureus (MRSA)

Yan, Xuan January 2011 (has links)
The thesis describes over-expression, purification and crystallization of three proteins from Staphylococcus aureus (S. aureus). S. aureus is an important human pathogen and methicillin-resistant S. aureus (MRSA) is a serious problem in hospitals nowadays. The crystal structure of 3-Methyladenine DNA glycosylase I (TAG) was determined by single-wavelength anomalous diffraction (SAD) method. TAG is responsible for DNA repair and is an essential gene for both MRSA and methicilin-susceptible S. aureus (MSSA). The structure was also determined in complex with 3-methyladenine (3-MeA) and was solved using molecular replacement (MR) method. An assay was carried out and the molecular basis of discrimination between 3-MeA and adenosine was determined. The native crystal structure of fructose 1-phosphate kinase (PFK) from S. aureus was determined to 2.30 Å and solved using molecular replacement method. PFK is an essential enzyme involved in the central metabolism of MRSA. Despite extensive efforts no co-complex was determined, although crystals were obtained they diffracted poorly. An assay which can be used to test for inhibitors has been developed. Mevalonate Kinase (MK) is another essential enzyme in MRSA and is a key drug target in the mevalonate pathway. Native data diffracting to 2.2 Å was collected. The structure was solved using multiple isomorphorus replacement (MIR) method. A citrate molecule was bound at the MK active site, arising from the crystallization condition. The citrate molecule indicates how substrate might bind. The protein was kinetically characterized. A thermodynamic analysis using fluorescence-based method was carried out on each protein to investigate binding interactions of potential fragments and thus a drug design starting point.

Page generated in 0.0847 seconds