• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 8
  • 7
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 80
  • 19
  • 19
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Seiberg-Witten theory on 4-manifolds with periodic ends

Veloso, Diogo 19 December 2014 (has links)
Dans cette thèse on prouve des résultats analytiques sur la théorie cohomotopique de Seiberg-Witten pour des 4-variétes Riemanniennes Spinc(4) a bouts périodiques, (X,g,τ). Nos résultats montrent, que sur certaines conditions techniques en (X, g, τ ),, cette nouvelle version est cohérente et mène a des invariants de Seiberg-Witten.Premièrement, en utilisant le critère de Taubes pour des operateurs périodiques dans des variétes a bouts périodiques, on montre que pour une 4-varieté Riemmanienne a bouts périodiques (X, g) vérifiant certaines conditions topologiques, le Laplacian ∆+ : L2(Λ2+) → L2(Λ2+) est un opérateur de Fredholm. On prouve une décomposition de type Hodge pour des 1-formes de X, a poids positif.Ensuite on prouve, en assumant certaines conditions topologiques et courbure scalaire non-negative sur les bouts, que l'opérateur de Dirac associé a une connection périodique (ASD a l'infini) est Fredholm.Dans la deuxième partie de la thèse on démontre un isomorphisme entre le groupe de cohomologie de de Rham Hd1R(X,iR), et le groupe harmonique intervenant dans la decomposition de Hodge des 1-formes de X a poids positif. On prouve l'existence de deux séquences exactes courtes liant le groupe de jauge de l'espace de modules de Seiberg-Witten et le groupe de cohomologie H1(X, 2πiZ).Dans la troisième partie on prouve les principaux résultats: la coercitivité de l'application de Seiberg-Witten et la compacité de l'espace de moduli pour une 4-varieté a bouts périodiques (X, g, τ ), vérifiant les conditions mentionnées plus haut.Finalment, utilisant la coercivité, on montre l'existence d'un invariant cohomotopique de type Seiberg- Witten type associé a (X, g, τ ). / In this thesis we prove analytic results about a cohomotopical Seiberg-Witten theory for a Riemannian, Spinc(4) 4-manifold with periodic ends, (X,g,τ) . Our results show that, under certain technical assumptions on (X, g, τ ), this new version is coher- ent and leads to Seiberg-Witten type invariants for this new class of 4-manifolds.First, using Taubes criteria for end-periodic operators on manifolds with periodic ends, we show that, for a Riemannian 4-manifold with periodic ends (X, g), verifying certain topological conditions, the Laplacian ∆+ : L2(Λ2+) → L2(Λ2+) is a Fredholm operator. This allows us to prove an important Hodge type decomposition for positively weighted Sobolev 1-forms on X.We prove, assuming non-negative scalar curvature on each end and certain technical topological conditions, that the associated Dirac operator associated with an end-periodic connection (which is ASD at infinity) is Fredholm.In the second part of the thesis we establish an isomorphism between be- tween the de Rham cohomology group, Hd1R(X,iR) (which is a topological in- variant of X) and the harmonic group intervening in the above Hodge type decomposition of the space of positively weighted 1-forms on X. We also prove two short exact sequences relating the gauge group of our Seiberg-Witten moduli problem and the cohomology group H1(X, 2πiZ).In the third part, we prove our main results: the coercivity of the Seiberg-Witten map and compactness of the moduli space for a 4-manifold with periodic ends (X,g,τ) verifying the above conditions.Finally, using our coercitivity property, we show that a Seiberg-Witten type cohomotopy invariant associated to (X, g, τ ) can be defined
42

Représentation stochastique d'équations aux dérivées partielles d'ordre supérieur à 3 issues des neurosciences / Stochastic representation of high-order partial differential equations resulting from neurosciences

Vigot, Alexis 29 November 2016 (has links)
Cette Thèse se divise en deux parties. Dans la partie mathématique, nous étudions différentes edp d'ordre supérieur à 3 issues des neurosciences avec un point de vue probabiliste. Nous démontrons une formule de FK pour une grande classe de solutions de KdV (pas seulement les n-solitons), à l'aide des déterminants de Fredholm et des transformées de Laplace d'intégrales de Skorohod itérées. Concernant les edp d'ordre supérieur à 3, les processus itérés qui consistent en la composition de deux processus indépendants, l'un correspondant à la position et l'autre au temps, sont liés à leurs solutions. En effet, nous montrons une formule de FK pour des solutions d'edp d'ordre supérieur à 3 basée sur des fonctionnelles de processus itérés, même dans le cas non Markovien, étendant ainsi les résultats existants. Nous proposons aussi un schéma numérique pour la simulation de trajectoires de diffusions itérées basé sur le schéma d'Euler, qui converge p.s., uniformément en temps, avec un taux de convergence d'ordre $1/4$. Une estimation de l'erreur est proposée. Dans la partie biologique, nous avons collecté plusieurs articles en neuroscience et d'autres domaines de biologie, où les edp précédentes sont utilisées. En particulier, on s'intéresse à la simulation et à la propagation du potentiel d'action lorsque la capacité de la membrane cellulaire n'est pas supposée constante. Ces articles ont en commun le fait qu'ils remettent en question le fameux modèle d'Hodgkin-Huxley datant des années cinquante. En effet, même si ce modèle a été très efficace pour la compréhension du signal neuronal, il ne prend pas en compte tous les phénomènes résultants de la propagation du potentiel d'action. / This Thesis consists of two parts. In the mathematical part we study Korteweg--de Vries (KdV) equation and high-order pdes with a probabilistic point of view in order to obtain Feynman-Kac (FK) type formulas. This study was motivated by recent biological models. We prove a FK representation for a larger class of solutions of KdV equation (not only n-solitons), using Fredholm determinants and Laplace transforms of iterated Skorohod integrals. Regarding higher order pdes, iterated processes that consist in the composition of two independent processes, one corresponding to position and the other one to time, are naturally related to their solutions. Indeed, we prove FK formulas for solutions of high order pdes based on functionals of iterated processes even in the non Markovian case, thus extending the existing results. We also propose a scheme for the simulation of iterated diffusions trajectories based on Euler scheme, that converges a.s., uniformly in time, with a rate of convergence of order $1/4$. An estimation of the error is proposed. In the biological part, we have collected several papers in neuroscience and other fields of biology where the previous types of pdes are involved. In particular, we are interested in the simulation of the propagation of the action potential when the capacitance of the cell membrane is not assumed to be constant. These papers have in common the fact that they question the famous Hodgkin Huxley model dating back to the fifties. Indeed this model even if it has been very efficient for the understanding of neuronal signaling does not take into account all the phenomena that occur during the propagation of the action potential.
43

A Class of Toeplitz Operators in Several Variables

Fedchenko, Dmitry, Tarkhanov, Nikolai January 2013 (has links)
We introduce the concept of Toeplitz operator associated with the Laplace-Beltrami operator on a compact Riemannian manifold with boundary. We characterise those Toeplitz operators which are Fredholm, thus initiating the index theory.
44

Calcul de la solution d'une équation intégrale singulière de Cauchy par itérations

Guessous, Najib 12 June 1984 (has links) (PDF)
On adapte des méthodes numériques efficaces pour équations de Fredholm à la résolution d'équations singulières. On développe en particulier les variantes itératives de Brakhage et d' Atkinson de la méthode de Nyström. Les exemples numériques traités confirment la nette supériorité de la méthode itérative de Brakhage
45

On the index of differential operators on manifolds with conical singularities

Schulze, Bert-Wolfgang, Sternin, Boris, Shatalov, Victor January 1997 (has links)
The paper contains the proof of the index formula for manifolds with conical points. For operators subject to an additional condition of spectral symmetry, the index is expressed as the sum of multiplicities of spectral points of the conormal symbol (indicial family) and the integral from the Atiyah-Singer form over the smooth part of the manifold. The obtained formula is illustrated by the example of the Euler operator on a two-dimensional manifold with conical singular point.
46

A Lefschetz fixed point theorem for manifolds with conical singularities

Nazaikinskii, Vladimir, Schulze, Bert-Wolfgang, Sternin, Boris, Shatalov, Victor January 1997 (has links)
We establish an Atiyah-Bott-Lefschetz formula for elliptic operators on manifolds with conical singular points.
47

Spectral boundary value problems and elliptic equations on singular manifolds

Schulze, Bert-Wolfgang, Nazaikinskii, Vladimir, Sternin, Boris, Shatalov, Victor January 1997 (has links)
For elliptic operators on manifolds with boundary, we define spectral boundary value problems, which generalize the Atiyah-Patodi-Singer problem to the case of nonhomogeneous boundary conditions, operators of arbitrary order, and nonself-adjoint conormal symbols. The Fredholm property is proved and equivalence with certain elliptic equations on manifolds with conical singularities is established.
48

The index of quantized contact transformations on manifolds with conical singularities

Schulze, Bert-Wolfgang, Nazaikinskii, Vladimir, Sternin, Boris January 1998 (has links)
The quantization of contact transformations of the cosphere bundle over a manifold with conical singularities is described. The index of Fredholm operators given by this quantization is calculated. The answer is given in terms of the Epstein-Melrose contact degree and the conormal symbol of the corresponding operator.
49

On the invariant index formulas for spectral boundary value problems

Savin, Anton, Schulze, Bert-Wolfgang, Sternin, Boris January 1998 (has links)
In the paper we study the possibility to represent the index formula for spectral boundary value problems as a sum of two terms, the first one being homotopy invariant of the principal symbol, while the second depends on the conormal symbol of the problem only. The answer is given in analytical, as well as in topological terms.
50

A semiclassical quantization on manifolds with singularities and the Lefschetz Formula for Elliptic Operators

Schulze, Bert-Wolfgang, Nazaikinskii, Vladimir, Sternin, Boris January 1998 (has links)
For general endomorphisms of elliptic complexes on manifolds with conical singularities, the semiclassical asymptotics of the Atiyah-Bott-Lefschetz number is calculated in terms of fixed points of the corresponding canonical transformation of the symplectic space.

Page generated in 0.0245 seconds