• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 173
  • 75
  • 25
  • 20
  • 11
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 407
  • 167
  • 101
  • 47
  • 40
  • 35
  • 30
  • 25
  • 24
  • 22
  • 21
  • 21
  • 19
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Greenhouse gas emission from a Prairie pothole landscape in Western Canada

Dunmola, Adedeji Samuel 10 April 2007 (has links)
Knowing the control of landscape position in greenhouse gas (GHG) emission from the Prairie pothole region is necessary to provide reliable emission estimates needed to formulate strategies for reducing emission from the region. Presented here are results of a study investigating the control of landscape position on the flux of nitrous oxide (N2O) and methane (CH4) from an agricultural soil. Field flux of N2O and CH4 and associated soil parameters from the Upper, Middle, Lower and Riparian slope positions were monitored from spring to fall of 2005, and spring of 2006, at the Manitoba Zero-Tillage Research Association (MTRZA) farm, 17.6km North of Brandon, MB. The field site consisted of a transect of 128 chambers segmented into the four landscape positions, with either all chambers or a subset of the chambers (32) sampled on select days. Spring thaw is an important period for annual inventory of N2O emission, thus, soil samples were also collected from the four slope positions in fall 2005, and treated in the laboratory to examine how antecedent moisture and landscape position affect the freeze-thaw emission of N2O from soil. Daily emissions of N2O and CH4 for 2005 were generally higher than for 2006, the former being a wetter year. There was high temporal variability in N2O and CH4 emission, with high fluxes associated with events like spring thaw and fertilizer application in the case of N2O, and rapid changes in soil moisture and temperature in the case of CH4. There was a high occurrence of hotspots for N2O emission at the Lower slope, associated with its high soil water-filled porosity (WFP) and carbon (C) availability. The Riparian zone was not a source of N2O emission, despite its soil WFP and organic C being comparable with the Lower slope. The hotspot for CH4 emission was located at the Riparian zone, associated with its high soil WFP and C availability. The Upper and Middle slope positions gave low emission or consumed CH4, associated with having low soil WFP and available C. This pattern in N2O and CH4 emission over the landscape was consistent with examination of entire 128 chambers on the transect or the 32 subset chambers. Significantly lowering the antecedent moisture content of soil by drying eliminated the freeze-thaw emission of N2O, despite the addition of nitrate to the soil. This was linked to drying slightly reducing the denitrifying enzyme activity (DEA) of soil. The highest and earliest freeze-thaw emission of N2O was from the Riparian zone, associated with its high antecedent moisture content, DEA and total organic C content. The addition of nitrate to soil before freezing failed to enhance freeze-thaw emission of N2O from the Upper, Middle and Lower slope positions, but increased emission three-fold for the Riparian zone. Despite the greater potential of the Riparian zone to produce N2O at thaw compared to the Upland slopes, there was no spring-thaw emission of N2O from the zone on the field. This was because this zone did not freeze over the winter, due to insulation by high and persistent snow cover, vegetation and saturated condition. The denitrifying potential and freeze-thaw N2O emission increased in going from the Upper to the Lower slope position, similar to the pattern of N2O emission observed on the field. The localization of hotspots for N2O and CH4 emission within the landscape was therefore found to be driven by soil moisture and C availability. When estimating GHG emission from soil, higher emission index for N2O and CH4 should be given to poorly-drained cropped and vegetated areas of the landscape, respectively. The high potential of the Riparian zone for spring-thaw emission of N2O should not be discountenanced when conducting annual inventory of N2O emission at the landscape scale. When fall soil moisture is high, snow cover is low, and winter temperature is very cold, freeze-thaw emission of N2O at the Riparian zones of the Prairie pothole region may be very high. / May 2007
152

Degradation of a Polymer Electrolyte Membrane Fuel Cell Under Freeze Start-up Operation

Rea, Christopher January 2011 (has links)
The polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical device used for the production of power, which is a key for the transition towards green and renewable power delivery devices for mobile, stationary and back-up power applications. PEMFCs consume hydrogen and oxygen to produce power, water and heat. The transient start-up from sub-zero freezing temperature conditions is a problem for the successful, undamaged and unhindered operation. The generation and presence of water in the PEMFC stack in such an environment leads to the formation of ice that hinders the flow of gases, causes morphological changes in the membrane electrode assembly (MEA) leading to reversible and irreversible degradation of stack performance. Start-up performance is highly dependent on start-up operational conditions and procedures. The previous state of the stack will influence the ability to perform upon the next start-up and operation. Water generated during normal operation is vital and improves performance when properly managed. Liquid water present at shut-down can form ice and cause unwanted start-up effects. This phase change may cause damage to the MEA and gas diffusion media due to volume expansion. Removal of high water content at shutdown decreases proton conductivity which can delay start-up times. The United States Department of Energy (DOE) has established a set of criteria that will make fuel cell technology viable when attained. As specified by DOE, an 80 kWe fuel cell will be required by 2015 to reach 50% power in 30 seconds from start-up at an ambient temperature of -20°C. This work investigates freeze start-up in a multi-kilowatt stack approaching both shut-down conditioning and start-up operations to improve performance, moderate fuel cell damage and determine the limits of current stack technology. The investigation involved a Hydrogenics Corporation 5 kW 506 series fuel cell stack. The investigation is completed through conditioning the fuel cell start-up performance at various temperatures ranging from -5°C to below -20°C. The control of system start-up temperature is achieved with an environmental chamber that maintains the desired set point during dwell time and start-up. The supply gases for the experiment are conditioned at ambient stack temperature to create a realistic environment that could be experienced in colder weather climates. Temperature controls aim to maintain steady ambient temperatures during progressive start-up in order to best simulate ambient conditions. The control and operation of the fuel cell is maintained by the use of a fuel cell automated test station (FCATS™). FCATS supplies gas feeds, coolant medium and can control temperature and reactant humidity in reactants according to a prescribed procedure for continuous operation. The iv collection of data occurs by the same system recording cell voltage, temperatures, pressures, flow rates and current densities. A procedural start-up and characterization are conducted in order improve start-of performance and examine reactant flows, coolant activation time, stack conditioning and the effects by freezing temperatures. The resulting degradation is investigated by polarization curves and various ex-situ measurements. In this work, it was found that freeze start-up of a fuel cell stack can be aided and managed by conditioning the stack at shut-down and applying a procedure to successfully start-up and mitigate the damage that freezing can cause.
153

Porous Asphalt Pavement Designs: Proactive Design for Cold Climate Use

Schaus, Lori Kathryn January 2007 (has links)
Porous asphalt pavements offer an alternative technology for stormwater management. A porous asphalt pavement differs from traditional asphalt pavement designs in that the structure permits fluids to pass freely through it, reducing or controlling the amount of run-off from the surrounding area. By allowing precipitation and run-off to flow through the structure, this pavement type functions as an additional stormwater management technique. The overall benefits of porous asphalt pavements may include both environmental and safety benefits including improved stormwater management, improved skid resistance, reduction of spray to drivers and pedestrians, as well as a potential for noise reduction. With increasing environmental awareness and an evolving paradigm shift in stormwater management techniques, this research aims to provide guidance for Canadian engineers, contractors, and government agencies on the design of porous asphalt pavement structures. One of the keys to the success of this pavement type is in the design of the asphalt mix. The air void percentage, which is ultimately related to the effectiveness of the pavement to adequately control the runoff, is a critical component of the mix. However, special consideration is required in order to obtain higher air void percentages while maintaining strength and durability within a cold climate. The objectives of this study were to evaluate several laboratory porous asphalt mix designs for durability and strength in cold climate conditions. The porous asphalt mixes consisted of a porous asphalt Superpave mix design method whereby the asphalt binder type was varied. Performance testing of the porous asphalt including draindown susceptibility, moisture-induced damage susceptibility, dynamic modulus, and permeability testing were completed. Based on the preliminary laboratory results, an optimal porous asphalt mix was recommended for use in a Canadian climate. Initial design guidelines for porous asphalt were provided based on preliminary findings and hydrological analysis.
154

Porous Asphalt Pavement Designs: Proactive Design for Cold Climate Use

Schaus, Lori Kathryn January 2007 (has links)
Porous asphalt pavements offer an alternative technology for stormwater management. A porous asphalt pavement differs from traditional asphalt pavement designs in that the structure permits fluids to pass freely through it, reducing or controlling the amount of run-off from the surrounding area. By allowing precipitation and run-off to flow through the structure, this pavement type functions as an additional stormwater management technique. The overall benefits of porous asphalt pavements may include both environmental and safety benefits including improved stormwater management, improved skid resistance, reduction of spray to drivers and pedestrians, as well as a potential for noise reduction. With increasing environmental awareness and an evolving paradigm shift in stormwater management techniques, this research aims to provide guidance for Canadian engineers, contractors, and government agencies on the design of porous asphalt pavement structures. One of the keys to the success of this pavement type is in the design of the asphalt mix. The air void percentage, which is ultimately related to the effectiveness of the pavement to adequately control the runoff, is a critical component of the mix. However, special consideration is required in order to obtain higher air void percentages while maintaining strength and durability within a cold climate. The objectives of this study were to evaluate several laboratory porous asphalt mix designs for durability and strength in cold climate conditions. The porous asphalt mixes consisted of a porous asphalt Superpave mix design method whereby the asphalt binder type was varied. Performance testing of the porous asphalt including draindown susceptibility, moisture-induced damage susceptibility, dynamic modulus, and permeability testing were completed. Based on the preliminary laboratory results, an optimal porous asphalt mix was recommended for use in a Canadian climate. Initial design guidelines for porous asphalt were provided based on preliminary findings and hydrological analysis.
155

Evaluation of the Performance of Pervious Concrete Pavement in the Canadian Climate

Henderson, Vimy Ina January 2012 (has links)
Pervious concrete pavement has the capacity to perform as two types of infrastructure: a pavement; and a stormwater management solution. It is a low impact development as it does not alter the natural hydrological cycle when implemented, unlike a conventional impermeable pavement. This research represents some of the initial investigations into pervious concrete pavement in Canada. The two research hypotheses of this research were the following: 1. Pervious concrete pavement can be successfully planned, designed, constructed and maintained in Canada for successful performance based on surface evaluations of permeability rate and surface condition. 2. Verification that the subsurface drainage capabilities of pervious concrete pavement are as described in literature and can be quantified using instrumentation. Through monitoring of the design, construction, performance and maintenance of five field sites across Canada and various laboratory pavement slabs, the behaviour of pervious concrete pavement in freeze-thaw conditions has been evaluated. This thesis presents the findings from the various phases of the life cycle of pervious concrete pavement: planning; design; construction; and maintenance. An interpretation of the performance of pervious concrete pavement both from the perspective of the surface and subsurface is included. The various field sites led to pervious concrete being used in areas exposed to static or parked traffic and areas with slow moving traffic. At the two sites that included static and slow moving traffic, the permeability performance was better in the areas of static traffic than those with moving traffic. Each of the field sites had a unique mix design and some had multiple variations of one basic mix design. The relationship between the void content and hardened density of the pervious concrete cores was linear with none of the cores being visually identified as outliers. Substantial deterioration in pavement structure performance was identified at one site. Other field sites showed changes in structural capacity over the monitoring timeline. However, no locations of substantial decreases in structural capacity were identified. The surface condition of the sites over the analysis period indicated that compaction to the surface during construction was helpful in constructing a quality pavement. The results of the project indicated that pervious concrete will crack when joints are not included and may also crack similarly to conventional impermeable concrete pavements if joints are spaced too widely or do not match joints of adjacent pavement. Washing the pervious concrete pavement surface with a large hose or garden hose was found to be the most effective in improving permeability across a site and also in increasing the permeability of the pervious concrete. The initial permeability of the pervious concrete pavement was found to influence future performance. Freeze-thaw cycling and moisture were found to alter the internal structure of pervious concrete. However, did not generally lead to surface distress development. The application of sand as a winter maintenance method decreased the permeability, as did the use of a salt solution. However, neither winter maintenance method led to the permeability rates of laboratory slabs dropping below an acceptable level. All three slabs loaded with a salt solution deteriorated to a point where the slabs had failed. The initial permeability of the field sites proved to be important and although some sites started with what appeared to be very high permeability rates, these sites were successful in the multiple year evaluation in maintaining adequate permeability rates. The types of surface distresses that developed in the cores and slabs in the laboratory were generally not substantially worse at the field sites, suggesting that pedestrian and vehicle traffic do not necessarily escalate distresses caused by the Canadian climate and corresponding winter activities. The subsurface drainage that was quantified by the instrumentation included in three field sites confirmed observations from the surface of the pavement and exceeded other expectations. Two field sites exhibited limited drainage capabilities on the surface of the pervious concrete pavement, one shortly after construction, and the other within a year following construction. The subsurface analysis quantified and confirmed that moisture was not able to drain completely vertically through the pavement structures at these two sites due to the limited access in the pervious concrete pavement surface. In comparison, the subsurface drainage at another site surpassed the assumed behaviour of pervious concrete pavement structures. The pavement structure in general at this site was highly permeable and this was identified as moisture was not observed to be collecting in the bottom of the storage base layer at any time or for any period of time. The successful overall drainage performance of this site demonstrates the ability to effectively use pervious concrete pavement in Canada.
156

Examination of a novel proteinaceous extract from winter rye (<i>Secale cereale</i> L. cv Musketeer)

Lim, Ze Long 11 April 2011 (has links)
A gel is a cross-linked polymer network that spans an entire liquid medium; its properties depend strongly on the interaction of the polymer and the liquid medium. There are various ways to induce gelation in different systems such as altering temperature or pH. In this study, phenol extracted protein fractions from non-acclimated (NA) and cold-acclimated (CA) winter rye (Secale cereale L. cv Musketeer) leaf tissue were subjected to freeze-thaw treatment. Gelation was induced in the NA and CA extracts after repeated freeze-thaw treatments, accompanied by a change in sample rheological properties. Further experimentation revealed that gel formation only occurred at high pH (pH 12.0) and that a minimum of 3 to 4 freeze-thaw cycles were required. The viscosity of the protein gel increased 5.7- to 9.5-fold in the NA and CA extracts respectively upon freeze-thaw. Experiments optimizing the extraction conditions and protein concentration were also performed. The gel was stable and only a specific combination of chaotropic agent, anionic surfactant and reducing agent such as urea, sodium docecyl sulfate (SDS) and â-mercaptoethanol (â-ME) with heating could disrupt the gel network. The gel was composed of several proteins in the extracts as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Based on SDS-PAGE analysis, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) was identified as the major protein component in the gel. Various experiments were performed to assess the role of Rubisco in gel formation; however, the results were inconclusive. It is suggested that these extracts may contain antifreeze proteins (AFPs) that have been demonstrated to form amyloid gels upon freeze-thaw. Further studies examining the composition and mechanism of gel formation may result in a future role for this material in the food industry.
157

Dynamic Layer Allocation for SVC Video Segments in P2P Streaming Networks

Wang, Yan-hsiang 30 June 2010 (has links)
In this paper, we propose two schemes for layer allocations to adjust the number of layers of SVC (Scalable Video Coding) segments according to the bandwidth variation in P2P video streaming networks. The first scheme is Periodical Layer Allocation (PLA) that can adjust the number of layers to fully satisfy the available bandwidth measured periodically. However, when the available bandwidth is changed abruptly, two major drawbacks may be occurred by PLA algorithm; first, the quality of video frames may become unsmooth so that users would feel uncomfortable about the picture quality, and second, the cost is increased due to the periodical measurement of the available bandwidth. Therefore, we propose Dynamic Layer Allocation (DLA), to dynamically change the time interval for adjusting SVC layers. When freeze-up occurred or when there was not enough buffer space to store the video segments during the interval, the interval would be reduced. When the interval for adjusting SVC layers was expired, available bandwidth can be determined by the number of video segments waiting in the buffer. Compared with PLA, DLA adjusts the SVC layers gracefully so that the quality of picture becomes smoother and users feel more comfortable while watching the film. We built a simulator written in C++ under two scenarios: the available bandwidth is changed abruptly and the one changed gradually. Simulation results show that the performance of PLA is quite similar to DLA when the available bandwidth is changed gradually. However, when the available bandwidth is changed abruptly, DLA can not only obtain the smoother video film but also decrease the freeze-up time significantly.
158

Antimicrobial Efficacy of Liposome Encapsulated Nisin and Nisin's Inhibition Against Listeria monocytogenes in Fluid Milk at Different Storage Temperatures

Schmidt, Shannon E. 2009 August 1900 (has links)
Nisin is a naturally occurring food antimicrobial that inhibits many Grampositive pathogens, including Listeria monocytogenes, a bacterial pathogen responsible for ~500 deaths in the U.S. annually. Factors known to counteract the nisin activity in a food matrix include: antimicrobial interaction with food components, insolubility, protease inactivation, and target cell-driven envelope modifications. Encapsulating nisin in liposomes can help protect nisin functionality by regulating its introduction to the external environment. The objectives of this study were to determine the encapsulation efficiency (%EE) of nisin within liposomes as a function of encapsulation method and the capacity of liposomal nisin to inhibit L. monocytogenes in fluid milk. Phosphatidylcholine (PC) and phosphotidyl-DL-glycerol (PG) were used to prepare three lipid molar formulations: PC, PC/PG 7:3, and PC/PG 6:4 (mol.%). Liposomes were formulated to entrap the self-quenching fluorophore calcein and nisin. Unencapsulated analyte was removed via size-exclusion chromatography, and percent EE was determined. To determine antilisterial activity of liposomes, fluid milk samples containing L. monocytogenes (4 log10 CFU/mL) in combination with liposomal or unencapsulated nisin at 50 IU/mL were mixed and aerobically stored at 5 degrees C and 20 degrees C. Surviving L. monocytogenes were enumerated via plating on a non-selective microbiological medium after 0, 1, 3, 6, 12, 24, 48, and 72 hours of incubation. Encapsulation of nisin via extrusion resulted in a mean EE% of 84.20%, 77.33% and 80.78% for PC, PC/PG 7:3, and PC/PG 6:4 liposomes, respectively. Freeze-thaw cycling formed liposomes without detectable fluorophore entrapment. L. monocytogenes populations grew to 5 log10 CFU/mL after 72 hours at 5 degrees C and 8 log10 CFU/mL at 20 degrees C after 48 hours. Unencapsulated nisin exerted statistically greater inhibition of Listeria in skim milk compared to liposomal nisin, regardless of incubation temperature. No statistically significant differences in Listeria populations exposed to free or encapsulated nisin in whole milk were observed at either incubation temperature. Results indicate storage temperature and presence of milk fat exert greater influence then nisin delivery (free vs. encapsulated) over Listeria inhibition. Further research is needed to confirm these findings and develop more effective means of liposome entrapment of nisin for the inhibition of foodborne bacterial pathogens.
159

Studies on the Antioxidative Potential of the Freeze-Dry Extract (Tsan-Ron-Bau-Yuan) of Fruits and Vegetables, DNA Vaccine Against Mycoplasma hyopneumoniae

Wang, Hsiao-Ning 04 August 2000 (has links)
The oxidative damage to DNA, protein and lipid, may be accumulated and play a role in the process of human cell aging. Oxidative stress may be due to the aerobic respiration and ozone-induced radiation which result in reactive oxygen species known as free radicals. Therefore, the antioxidant and free radical scanvenger which may reduce the oxidative damage, are of great interest, both in academic research and in the business world. The present study aims to evaluate the antioxidative potential of a very unique vegetable-fruit extract (Tsan-Ron-Bau-Yuan). The extract consists of over forty domestic vegetables and fruits, without using chemical fertilizers and pesticides during their entire growth period, is produced through a sophisticated freeze-dry technology. The anti-hydroxyl radical antioxidative potential were evaluated using the following four methods: (1) the plasmid DNA (2) the protein (3) the cell line and (4) the red blood cell . The results clearly demonstrat that the aqueous fraction of this extract can remarkably reduce the oxidative damage as evidenced by the DNA and protein model. In addition, the susceptibility of human red cells to oxidative stress can also be alleviated to some extents based on the RBC deformability studies. The efficacy of protection of the oxidative damage mediated by .OH generated by the Fenton¡¦s reaction was in the order of : aquaeous extract >100% ethanol extract > ethanol/ethylacetatee extract > 50% ethanol extract. Conversely, no significant protection to the action of hydrogen peroxide was observed in the cell line. Lysozyme which is ubiquitous among various natural products has negligible contribution as an antioxidant as revealed in the RBC deformability tests. Swine enzootic pneumoniae ¡]SEP¡^, is a disease caused by Mycoplasma hyopneumoniae infection, and usually lead to considerable economic loss. Though extensive research during the past years, the molecular mechanism about the infective pathway of M. hyopneumoniae was still elusive. The membrane proteins of this microorganism were considered as critical adhesion molecules and therefore are potential candidates for vaccine development. Through immunoscreening, we had isolated five recombinant phage clones expressing 10 kDa, 32 kDa, 36 kDa, 42 kDa and 60 kDa antigen proteins from the lEMBL3 library of Mycoplasma hyopneumoniae. The clone carrying the P42 gene was subcloned and further characterized as a heat shock protein gene. In the present study, the heat-shock protein gene encoding a 42 kDa/ 65 kDa protein¡]P42/P65¡^was cloned into the mammalian expression vector pcDNA3 and obtained plasmid pcDNA42. The immune response induced by pcDNA42 was evaluated in mice. The IgG titer was obviously elevated during the first eight weeks with the IgG1 titer slightly higher than IgG2a. However, the IgM titer was not changed signifcantly. Studies on the macrophage activity and T cell cytotoxity were still undergoning.
160

Ein Beitrag zur Kohlenstoffkontrolle bei der VGF-Züchtung von semi-isolierenden GaAs-Kristallen

Bünger, Thomas 20 July 2009 (has links) (PDF)
Erstmalig wurden für die VGF-Züchtung von GaAs-Kristallen die verschiedenen Möglichkeiten der Beeinflussung der Kohlenstoffkonzentration untersucht und Möglichkeiten zu deren zielstrebigen Einstellung aufgezeigt. Dies eröffnet auch für die so gezüchteten Kristalle den semi-isolierenden Widerstandsbereich bei niedrigkompensiertem GaAs technologisch sicher einstellen zu können. Anhand umfangreicher experimenteller Daten und thermodynamischer Betrachtungen werden die komplexen Zusammenhänge untersucht und Lösungswege für die technologische Beherrschung aufgezeigt. Das auf die experimentellen Daten angewendete Modell erzeugte die notwendigen Regelparameter für einen gradientenfreien Verlauf der Kohlenstoffkonzentration entlang der Kristallachse. Die Ergebnisse der Dissertation konnten in eine industrielle Fertigungstechnologie übertragen werden.

Page generated in 0.026 seconds