• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 51
  • 24
  • 17
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 298
  • 298
  • 228
  • 96
  • 66
  • 63
  • 63
  • 52
  • 47
  • 42
  • 41
  • 39
  • 37
  • 37
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Enhanced Structural Performance through Process-Material Co-Design for Friction-Stir Based Additive Manufacturing

Gumaste, Anurag Krishnakedar 12 1900 (has links)
The advancement of additive manufacturing (AM) has transformed manufacturing into a single-step process. Solid-state AM processes offer significant advantages over fusion-based techniques, including porosity-free deposits, lower residual stresses, wrought-like microstructure, better mechanical properties, improved process control, and higher build rates. This study explores the development of SolidStir® technology, an extrusion-enabled AM process that employs friction stir (FS) technology to enhance structural performance. A conceptual model explaining the process dynamics of SolidStir™ extrusion is developed using a precipitation-strengthened aluminum alloy. Development of SolidStir® extrusion into SolidStir® AM is demonstrated using a thermally stable, precipitation-strengthened alloy. Microstructural and mechanical characterizations highlight the challenges in performance of precipitation-strengthened material resulting from repeated thermal cycles. This challenge is mitigated through the design of thermally stable alloy, exhibiting that process attribute-based material design can achieve exceptional structural performance. A comparison of the performance of thermally stable alloys using SolidStir® AM and additive friction stir deposition further highlights the efficacy of process specific alloy design. Implementation of FS-based AM process could be useful to numerous industries, such as aerospace, automotive, and shipbuilding, due to its capacity to produce high-strength, defect-free products while minimizing environmental impact.
92

A Simple Method for Evaluating Wear in Different Grades of Tooling Applied to Friction Stir Spot Welding

Kennard, Kirtis Frankland 01 July 2015 (has links) (PDF)
In this study tools consisting of a 5mm cylindrical pin and a 12mm shoulder held by a simple tool holder were used to compare the wear of 11 tooling materials. The objective was to determine if using these tools in a spot welding configuration to simulate friction stir welding could differentiate the potential performance of tooling materials. All tools were made of varying percentages of polycrystalline cubic boron nitride (PCBN), tungsten (W) and rhenium (Re). The materials are referred to herein as GV1, GV2, G1, G2, G3, G4, G5, G6, G7, G8 and G9.The tools were run to 205 welds if they did not fracture first. The grades averaged the following quantities of welds before fracture failure GV-1:0; GV-2:200; G1:82; G2:204; G3:205; G4:205; G5:96; G7:102.73; G8:21.2; G9:38.5. Of the tools that ran the full 205 welds without chipping, the average calculated volume loss, which was the best indication of wear, was as follows G2:1.83%; G3:2.53%; G4:2.41%; G5:1.93%; and G7:2.30%.The study showed that G2 had the least wear and G6 had the most wear, of those tools that completed all 205 spot welds. Fracture was the failure mode of all grades with over 70% CBN content. It was found that small CBN grain size was not correlated to better wear performance, as has been seen in a prior study.
93

Effects of Friction Stir Processing on the Microstructure and Mechanical Properties of Fusion Welded 304L Stainless Steel

Sterling, Colin J. 17 June 2004 (has links) (PDF)
Friction stir processing (FSP) has been utilized to locally process regions of arc weldments in 304L stainless steel to improve the microstructure and mechanical performance. The cast microstructure and coarse delta-ferrite has been replaced with a fine-grained wrought microstructure. Furthermore, twins were introduced throughout the friction stir processed region. Although sub-surface sigma and carbides were introduced during FSP, their presence is not expected to adversely affect the resulting mechanical or corrosion properties of friction stir processed 304L arc welds. The resulting mechanical properties of FS processed weldments were also an improvement over as-welded arc welds. FSP resulted in an increase of 6% for both yield and ultimate strength. It is expected that the improved microstructure will lead to improved stress corrosion cracking and general corrosion properties.
94

Comparison of 3-D Friction Stir Welding Viscoplastic Finite Element Model with Weld Data and Physically-Simulated Data

Posada, Maria 06 December 2012 (has links) (PDF)
Models (both physical and numerical) of the friction stir (FS) welding process are used to develop a greater understanding of the influence of independent process parameters on dependent process output variables, such as torque, power, specific weld energy, peak temperature, cooling rates and various metallurgical factors (e.g., grain size and precipitates). An understanding of how the independent process parameters influence output variables and ultimately their effect on resultant properties (e.g., strength, hardness, etc..) is desirable. Most models developed have been validated primarily for aluminum alloys with relatively small amounts of experimental data. Fewer models have been validated for steels or stainless steels, particularly since steels and stainless steels have proven more challenging to friction stir than aluminum alloys. The Gleeble system is also a powerful tool with the capability to perform thermomechanical simulations in a known and controlled environment and provide physical representation of resultant microstructure and hardness values. The coupling of experimental data and physical simulated data can be extremely useful in assessing the capabilities of friction stir numerical process models. The overall approach is to evaluate Isaiah an existing three-dimensional finite element code developed at Cornell University by comparing against experimental and physically-simulated data to determine how well the code output relates to real FS data over a range of nine processing conditions. Physical simulations replicating select thermomechanical streamline histories were conducted to provide a physical representation of resultant metallurgy and hardness. Isaiah shows promise in predicting qualitative trends over a limited range of parameters and is not recommended for use as a predictive tool but rather a complimentary tool, Once properly calibrated, the Isaiah code can be a powerful tool to gain insight into the process, strength evolution during the process and coupled with a texture evolution model may also provide insight into microstructural and texture evolution over a range for which it is calibrated.
95

Processing Mechanics of Additive Friction Stir Deposition

Hartley II, William Douglas 03 July 2023 (has links)
Additive friction stir deposition (AFSD) is a newly developed solid-state metal additive manufacturing (AM) technology that adds a material feeding mechanism to the friction stir principle (Yu et al.., 2018). As a newly developed process, the development of a sound understanding of the process mechanics is necessary and may shed light on both limiting factors and new opportunities. This work explores the fundamental modes of deformation through an analytical decomposition of three flow components: 1) radial spreading, 2) rotating, and 3) traversing shear flow. The analytical models provide 'back-of-the-envelope' estimates of mechanical requirements (machine torque, for example), and straightforward algebraic equations for estimating the peak strain rate associated with deformation and the expected residence time of material underneath the AFSD tool head. A more complex, but preliminary, numerical modeling approach is then presented to models the steady state material flow as a fully coupled non-Newtonian fluid with rate and temperature dependent properties. Additionally, a transient thermal model is presented which captures the thermal history of the material along a dynamic printing trajectory. The numerical models provide insight into the pressure distribution underneath the AFSD tool, which impacts deformation bonding conditions at the interface, and suggest that temperature differences under the tool may be as high as 70℃. Several interface fracture experiments reveal a well-bonded center region, with high ductility and energy dissipation, and a poorly bonded outer edge region. Novel characterization work has been presented showing evidence of a nearly uniform 50μm thick shear layer on the top surface of a deposit. Analysis of the Prandtl number suggests that this shear layer is a consequence of a thin thermal boundary layer, which in the presence of frictional shear stress, becomes a thermo-mechanical boundary layer with a distinct flow regime from the bulk. Further characterization shows viscous mixing patterns in the wake of tool pins, and incomplete bonding at the edges of the deposition track. An additional application is presented for AFSD – selective area cladding of thin sheet metal. Substrates as thin as 1.4mm were clad without localized deformation, which is dependent on the clamping configuration of the substrate. Cladding quality, interface integrity, and certain failure modes are identified for thin cladding operations. In-situ monitoring and ex-situ laser scanning shows the slow evolution of thermal distortion during cooling of the cladding-on-sheet system. Finally, residual stress and strain estimates are made using curvature methods for bi-layer specimens extracted from the cladding. / Doctor of Philosophy / Additive manufacturing of metal components (colloquially called "3D printing") has generated significant interest and excitement as the manufacturing method of the future, where new materials with complex shapes and functionalities may unlock new possibilities for commerce and industry. Metal 3D printing also gives us new methods to repair aging and damaged structures, providing opportunities to extend the life of existing infrastructure. This work is centrally focused on understanding the most important factors and physical principles at play during a particular metal additive manufacturing process, additive friction stir deposition (ASFD). AFSD uses deformation to heat and bond materials together, building on the principles of friction welding and forge welding. A fundamental understanding of the process mechanics will allow for a better understanding of the current limits and potential opportunities this new technology can provide. Using a combination of analytical analysis, numerical modeling, and experiments, this work aims to provide a deeper understanding of the material flow, thermal fields, and mechanical forces associated with depositing material by AFSD, which may be insightful for new materials, tunable material properties, and may lead to new machine design opportunities.
96

Process-Structure-Property Relationships in Friction Stir Welded Precipitation Strengthened Aluminum Alloys

Mondal, Barnali 05 1900 (has links)
Through a series of carefully designed experiments, characterization and some modeling tools, this work is aimed at studying the role of thermal profiles on different microstructural zones and associated properties like strength and corrosion through a variation of weld parameters, thermal boundary conditions and material temper. Two different alloys belonging to the Al-Cu and Al-Cu-Li system in different temper conditions- peak aged (T8) and annealed (O) were used. A 3D-thermal pseudo mechanical (TPM) model is developed for the FSW process using heat transfer module in COMSOL Multiphysics and is based on a heat source wherein the temperature dependent yield shear stress is used for the heat generation. The precipitation and coarsening model is based on the Kampmann and Wagner theoretical framework and accounts for the competition between the various nucleation sites for both metastable and equilibrium precipitates. The model predicts different precipitate mean radius and volume fraction for the various zones in the friction stir welded material. A model for the yield strength is developed which considers contributions from different strengthening mechanisms. The predictions of the each models have been verified against experimental data and literature. At constant advance per rotation, the peak temperature decreases with a decrease in traverse speed and increases with an increase in tool rotation. Weld properties were significantly affected by choice of thermal boundary conditions in terms of backing plate diffusivity. Weld conditions with a higher peak temperature and high strain rate results in more dissolution of precipitates and fragmentation of constituent particles resulting in a better corrosion behavior for the weld nugget. For a peak aged temper of 2XXX alloys, the weld nugget experiences dissolution of strengthening precipitates resulting in a lower strength and the Heat affected zone (HAZ) experiences coarsening of precipitates. For an annealed material, both the weld nugget and HAZ experiences dissolution of precipitates with an increase in strength in the weld nugget.
97

Processamento e caracterização de ligas do sistema Co-Ni-Al-W-Cr-(Nb,Ta)-C-B visando aplicação como material de ferramenta para soldagem por atrito / Processing and characterization of alloys from the Co-Ni-W-Cr-(Nb, Ta)-C-B system aiming application as tool material for friction stir welding

Salgado, Marcus Vinicius da Silva 31 August 2015 (has links)
Os objetivos deste trabalho foram processar e caracterizar microestrutural e mecanicamente superligas à base de cobalto do sistema Co-Al-W-Ni-Cr-(Nb,Ta)- C-B com microestrutura ?/?\'. Visando possível aplicação em ferramenta para Soldagem por Atrito com Pino Não Consumível (SAPNC), em inglês Friction Stir Welding (FSW) nas composições: (Co-10Al-7,5W-30Ni-10Cr-3,0Nb-0,6C-0,06B %at. ) - 30Ni-3Nb, (Co-10Al-7,5W-40Ni-10Cr-3,0Nb-0,6C-0,06B %at.) - 40Ni-3Nb, (Co-10Al-7,5W-50Ni-10Cr-3,0Nb-0,6C-0,06B %at.) - 50Ni-3Nb além da liga patenteada (Co-10Al-7,5W-40Ni-10Cr-3,0Ta-0,6C-0,06B %at.) - 40Ni-3Ta considerada padrão para este projeto. A caraterização microestrutural foi feita por microscopia eletrônica de varredura (MEV), microscopia eletrônica de varredura por emissão de campo (MEV-FEG), medidas de microanálise semi-quantitativa e mapeamento químico por EDS, caracterização por difração de raios X, além do ensaio mecânico de dureza Vickers em todas as amostras. Os resultados da caracterização microestrutural e mecânica para a liga 40Ni-3Ta mostraram-se semelhantes aos encontrados na literatura enquanto que a composição 40Ni-3Nb foi a que apresentou resultados mais próximos em relação à liga padrão. / The objectives of this study were to process and characterize microstructural and mechanical cobalt-based superalloys from Co-Al-W-Ni-Cr-(Nb,Ta)-C-B system with ?/? \' microstructure. Aiming possible application for Friction Stir Welding (FSW) tool in the compositions: (Co-10Al-7.5W-30Ni-10Cr-3.0Nb-0.6C-0.06B %at.) - 30Ni-3Nb, (Co-10Al-7.5W-40Ni-10Cr-3.0Nb-0.6C-0.06B %at. ) - 40Ni-3Nb, (Co-10Al-7.5W-50Ni-10Cr-3.0Nb-0.6C-0.06B %at.) - 50Ni-3Nb, including the patented alloy (Co-10Al-7.5W -40Ni-10Cr-3.0Ta-0.6C-0.06B %at.) - 40Ni-3Ta considered the standard alloy for this project. The microstructural characterization was made by Scanning Electron Microscopy (SEM), Scanning Electron Microscopy with Field Emission Gun (SEM-FEG), semi-quantitative microanalysis measures and chemical mapping by EDS, characterization by X - ray diffraction and mechanical test of hardness Vickers in all the samples. The results of the microstructural and mechanical characterization for 40Ni-3Ta alloy were similar to those found in the literature. The 40Ni-3Nb alloy showed the closest results, among the other alloys studied in comparison with the standard alloy.
98

Processamento e caracterização de ligas do sistema Co-Ni-Al-W-Cr-(Nb,Ta)-C-B visando aplicação como material de ferramenta para soldagem por atrito / Processing and characterization of alloys from the Co-Ni-W-Cr-(Nb, Ta)-C-B system aiming application as tool material for friction stir welding

Marcus Vinicius da Silva Salgado 31 August 2015 (has links)
Os objetivos deste trabalho foram processar e caracterizar microestrutural e mecanicamente superligas à base de cobalto do sistema Co-Al-W-Ni-Cr-(Nb,Ta)- C-B com microestrutura ?/?\'. Visando possível aplicação em ferramenta para Soldagem por Atrito com Pino Não Consumível (SAPNC), em inglês Friction Stir Welding (FSW) nas composições: (Co-10Al-7,5W-30Ni-10Cr-3,0Nb-0,6C-0,06B %at. ) - 30Ni-3Nb, (Co-10Al-7,5W-40Ni-10Cr-3,0Nb-0,6C-0,06B %at.) - 40Ni-3Nb, (Co-10Al-7,5W-50Ni-10Cr-3,0Nb-0,6C-0,06B %at.) - 50Ni-3Nb além da liga patenteada (Co-10Al-7,5W-40Ni-10Cr-3,0Ta-0,6C-0,06B %at.) - 40Ni-3Ta considerada padrão para este projeto. A caraterização microestrutural foi feita por microscopia eletrônica de varredura (MEV), microscopia eletrônica de varredura por emissão de campo (MEV-FEG), medidas de microanálise semi-quantitativa e mapeamento químico por EDS, caracterização por difração de raios X, além do ensaio mecânico de dureza Vickers em todas as amostras. Os resultados da caracterização microestrutural e mecânica para a liga 40Ni-3Ta mostraram-se semelhantes aos encontrados na literatura enquanto que a composição 40Ni-3Nb foi a que apresentou resultados mais próximos em relação à liga padrão. / The objectives of this study were to process and characterize microstructural and mechanical cobalt-based superalloys from Co-Al-W-Ni-Cr-(Nb,Ta)-C-B system with ?/? \' microstructure. Aiming possible application for Friction Stir Welding (FSW) tool in the compositions: (Co-10Al-7.5W-30Ni-10Cr-3.0Nb-0.6C-0.06B %at.) - 30Ni-3Nb, (Co-10Al-7.5W-40Ni-10Cr-3.0Nb-0.6C-0.06B %at. ) - 40Ni-3Nb, (Co-10Al-7.5W-50Ni-10Cr-3.0Nb-0.6C-0.06B %at.) - 50Ni-3Nb, including the patented alloy (Co-10Al-7.5W -40Ni-10Cr-3.0Ta-0.6C-0.06B %at.) - 40Ni-3Ta considered the standard alloy for this project. The microstructural characterization was made by Scanning Electron Microscopy (SEM), Scanning Electron Microscopy with Field Emission Gun (SEM-FEG), semi-quantitative microanalysis measures and chemical mapping by EDS, characterization by X - ray diffraction and mechanical test of hardness Vickers in all the samples. The results of the microstructural and mechanical characterization for 40Ni-3Ta alloy were similar to those found in the literature. The 40Ni-3Nb alloy showed the closest results, among the other alloys studied in comparison with the standard alloy.
99

Thermomechanical Processing, Additive Manufacturing and Alloy Design of High Strength Mg Alloys

Palanivel, Sivanesh 05 1900 (has links)
The recent emphasis on magnesium alloys can be appreciated by following the research push from several agencies, universities and editorial efforts. With a density equal to two-thirds of Al and one-thirds of steel, Mg provides the best opportunity for lightweighting of metallic components. However, one key bottleneck restricting its insertion into industrial applications is low strength values. In this respect, Mg-Y-Nd alloys have been promising due to their ability to form strengthening precipitates on the prismatic plane. However, if the strength is compared to Al alloys, these alloys are not attractive. The primary reason for low structural performance in Mg is related to low alloying and microstructural efficiency. In this dissertation, these terminologies are discussed in detail. A simple calculation showed that the microstructural efficiency in Mg-4Y-3Nd alloy is 30% of its maximum potential. Guided by the definitions of alloying and microstructural efficiency, the two prime objectives of this thesis were to: (i) to use thermomechanical processing routes to tailor the microstructure and achieve high strength in an Mg-4Y-3Nd alloy, and (ii) optimize the alloy chemistry of the Mg-rare earth alloy and design a novel rare—earth free Mg alloy by Calphad approach to achieve a strength of 500 MPa. Experimental, theoretical and computational approaches have been used to establish the process-structure-property relationships in an Mg-4Y-3Nd alloy. For example, increase in strength was observed after post aging of the friction stir processed/additive manufactured microstructure. This was attributed to the dissolution of Mg2Y particles which increased the alloying and microstructural efficiency. Further quantification by numerical modeling showed that the effective diffusivity during friction stir processing and friction stir welding is 60 times faster than in the absence of concurrent deformation leading to the dissolution of thermally stable particles. In addition, the investigation on the interaction between dislocations and strengthening precipitate revealed that, specific defects like the I1 fault aid in the accelerated precipitation of the strengthening precipitate in an Mg-4Y-3Nd alloy. Also, the effect of external field (ultrasonic waves) was studied in detail and showed accelerated age hardening response in Mg-4Y-3Nd alloy by a factor of 24. As the bottleneck of low strength is addressed, the answers to the following questions are discussed in this dissertation: What are the fundamental micro-mechanisms governing second phase evolution in an Mg-4Y-3Nd alloy? What is the mechanical response of different microstructural states obtained by hot rolling, friction stir processing and friction stir additive manufacturing? Is defect engineering critical to achieve high strength Mg alloys? Can application of an external field influence the age hardening response in an Mg-4Y-3Nd alloy? Can a combination of innovative processing for tailoring microstructures and computational alloy design lead to new and effective paths for application of magnesium alloys?
100

Soudage d'alliages d'aluminium par la technologie Friction Stir Welding Bobbin Tool / Friction Stir Welding with Bobbin Tool of aluminium alloys

Guerin, Baptiste jean patrice 04 March 2010 (has links)
Dans le domaine des matériaux métalliques, les techniques d’assemblage par soudageconduisent à des réductions de masse et de coûts importantes susceptibles d’intéresserles industries aéronautiques. Néanmoins, les procédés de soudage classiquespar fusion ne s’appliquent pas aux dernières générations d’alliages d’aluminium aéronautiques.Dans ce contexte, le procédé de soudage Friction Stir Welding présentedes atouts considérables, de nature à rendre compétitives les structures métalliquesface à la montée en puissance des matériaux composites.L’objectif de cette thèse est double. Il s’agit d’une part d’améliorer notre compréhensiondu procédé de soudage Friction Stir Welding Bobbin Tool puis dans undeuxième temps de proposer une méthodologie visant à prédire les paramètres desoudage optimaux.Afin de mener à bien ces objectifs, des essais de soudage ont été menés pour troisalliages d’aluminium aéronautique, incluant deux alliages d’aluminium-lihtium, etdeux épaisseurs, représentatives d’une jonction de peau de fuselage. Les résultatsd’essais ont par la suite été exploités et ont permis de mettre en évidence des corrélationsentre paramètres de soudage, température, puissance et malaxage du noyausoudé.Dans un troisième temps, afin de supporter la démarche expérimentale, des outilsde simulation ont été utilisés. Un modèle thermo-fluide local a été développé afinde simuler les phénomènes de malaxage dans le noyau soudé. A l’échelle globale, unmodèle thermique a permis de reproduire fidèlement les phénomènes de diffusion dela chaleur dans la structure. Enfin, le couplage des deux modèles a montré qu’il étaitpossible de simuler puis de prédire un domaine de soudabilité. / In the field of metallic materials, welding technologies can provide significantmass reductions and cost savings to aircraft industries. Nevertheless, classical fusionwelding processes can not be applied to last generations of aeronautical aluminiumalloys. In this context, Friction Stir Welding offers many advantages and can helpmetallic parts to face the build up of composite materials.This thesis has mainly two objectives. We aim first at improving our understandingof Friction Stir Welding with Bobbin Tool and then at proposing a kind ofmethodology able to predict optimal welding parameters.Welding trials were carried out using three aeronautical aluminium alloys includingtwo aluminium lithium and two thicknesses representative of a fuselagejunction. Results were analyzed and some correlations were found between weldingparameters, temperature and stirring of the weld nugget.This work was also supported by several modeling tools. A local thermo-fluidapproach has been used to simulate stirring of the material in the weld nugget. Aglobal thermal model has been used to simulate heat diffusion in the structure. Then,a coupled approach of these previous modeling tools shows that it was possible tonumerically predict a processing window.

Page generated in 0.0783 seconds