51 |
Frobenius-Like Permutations and Their Cycle StructureVirani, Adil B 09 May 2015 (has links)
Polynomial functions over finite fields are a major tool in computer science and electrical engineering and have a long history. Some of its aspects, like interpolation and permutation polynomials are described in this thesis. A complete characterization of subfield compatible polynomials (f in E[x] such that f(K) is a subset of L, where K,L are subfields of E) was recently given by J. Hull. In his work, he introduced the Frobenius permutation which played an important role. In this thesis, we fully describe the cycle structure of the Frobenius permutation. We generalize it to a permutation called a monomial permutation and describe its cycle factorization. We also derive some important congruences from number theory as corollaries to our work.
|
52 |
Arithmetical Graphs, Riemann-Roch Structure for Lattices, and the Frobenius Number ProblemUsatine, Jeremy 01 January 2014 (has links)
If R is a list of positive integers with greatest common denominator equal to 1, calculating the Frobenius number of R is in general NP-hard. Dino Lorenzini defines the arithmetical graph, which naturally arises in arithmetic geometry, and a notion of genus, the g-number, that in specific cases coincides with the Frobenius number of R. A result of Dino Lorenzini's gives a method for quickly calculating upper bounds for the g-number of arithmetical graphs. We discuss the arithmetic geometry related to arithmetical graphs and present an example of an arithmetical graph that arises in this context. We also discuss the construction for Lorenzini's Riemann-Roch structure and how it relates to the Riemann-Roch theorem for finite graphs shown by Matthew Baker and Serguei Norine.
We then focus on the connection between the Frobenius number and arithmetical graphs. Using the Laplacian of an arithmetical graph and a formulation of chip-firing on the vertices of an arithmetical graph, we show results that can be used to find arithmetical graphs whose g-numbers correspond to the Frobenius number of R. We describe how this can be used to quickly calculate upper bounds for the Frobenius number of R.
|
53 |
Frequency-domain equalization for continuous phase modulationSaleem, Sajid 13 January 2014 (has links)
Continuous phase modulation~(CPM) is a non-linear, constant-envelope modulation scheme with memory, known for its bandwidth and power efficiency. Multi-h CPM uses multiple modulation indices in successive symbol intervals to improve the error performance as compared to single-h CPM~(basic CPM that utilizes only a single modulation index). One of the major applications of multi-h CPM is in aeronautical telemetry systems. Modern aeronautical devices host an increasing number of sensors, which can transmit flight testing data to the ground station. However, this excess data transfer increases the intersymbol interference, and thus channel equalization is required at the receiver. The objective of our research is to propose low-complexity frqeuency-domain equalization~(FDE) techniques for multi-h CPM waveforms. For a modulation scheme with memory, such as CPM, the cyclic constraint on the FDE block necessitates the use of an extra segment of symbols, called intrafix or tail segment. We have used very simple geometric arguments to derive upper and lower bounds on the length of the intrafix in terms of the parameters of the modulation scheme and the Frobenius number. It is concluded that the length of the intrafix for multi-h CPM schemes is typically shorter than those required for single-h modulation schemes. We propose two receiver architectures; one uses a matched filter front end, while the other utilizes a fractional sampling front end. Various simplifications are proposed for each architecture, and the trade-off between receiver complexity and performance is analyzed and verified through detailed simulation studies.
|
54 |
Quantum codes over Finite Frobenius RingsSarma, Anurupa 2012 August 1900 (has links)
It is believed that quantum computers would be able to solve complex problems more quickly than any other deterministic or probabilistic computer. Quantum computers basically exploit the rules of quantum mechanics for speeding up computations. However, building a quantum computer remains a daunting task. A quantum computer, as in any quantum mechanical system, is susceptible to decohorence of quantum bits resulting from interaction of the stored information with the environment. Error correction is then required to restore a quantum bit, which has changed due to interaction with external state, to a previous non-erroneous state in the coding subspace. Until now the methods for quantum error correction were mostly based on stabilizer codes over finite fields. The aim of this thesis is to construct quantum error correcting codes over finite Frobenius rings. We introduce stabilizer codes over quadratic algebra, which allows one to use the hamming distance rather than some less known notion of distance. We also develop propagation rules to build new codes from existing codes. Non binary codes have been realized as a gray image of linear Z4 code, hence the most natural class of ring that is suitable for coding theory is given by finite Frobenius rings as it allow to formulate the dual code similar to finite fields. At the end we show some examples of code construction along with various results of quantum codes over finite Frobenius rings, especially codes over Zm.
|
55 |
The abstract structure of quantum algorithmsZeng, William J. January 2015 (has links)
Quantum information brings together theories of physics and computer science. This synthesis challenges the basic intuitions of both fields. In this thesis, we show that adopting a unified and general language for process theories advances foundations and practical applications of quantum information. Our first set of results analyze quantum algorithms with a process theoretic structure. We contribute new constructions of the Fourier transform and Pontryagin duality in dagger symmetric monoidal categories. We then use this setting to study generalized unitary oracles and give a new quantum blackbox algorithm for the identification of group homomorphisms, solving the GROUPHOMID problem. In the remaining section, we construct a novel model of quantum blackbox algorithms in non-deterministic classical computation. Our second set of results concerns quantum foundations. We complete work begun by Coecke et al., definitively connecting the Mermin non-locality of a process theory with a simple algebraic condition on that theory's phase groups. This result allows us to offer new experimental tests for Mermin non-locality and new protocols for quantum secret sharing. In our final chapter, we exploit the shared process theoretic structure of quantum information and distributional compositional linguistics. We propose a quantum algorithm adapted from Weibe et al. to classify sentences by meaning. The clarity of the process theoretic setting allows us to recover a speedup that is lost in the naive application of the algorithm. The main mathematical tools used in this thesis are group theory (esp. Fourier theory on finite groups), monoidal category theory, and categorical algebra.
|
56 |
On the cyclic structure of the peripheral point spectrum of Perron-Frobenius operatorsSorge, Joshua 17 November 2008 (has links)
The Frobenius-Perron operator acting on integrable functions and the Koopman operator acting on essentially bounded functions for a given nonsingular transformation on the unit interval can be shown to have cyclic spectrum by referring to the theory of lattice homomorphisms
on a Banach lattice. In this paper, it is verified directly that the peripheral
point spectrum of the Frobenius-Perron operator and the point spectrum of the Koopman operator are fully cyclic. Under
some restrictions on the underlying transformation, the Frobenius-Perron operator is known to be a well defined linear operator on
the Banach space of functions of bounded variation. It is also shown that the peripheral point spectrum of the Frobenius-Perron operator on the functions of bounded variation is fully cyclic.
|
57 |
Heisenberg Categorification and Wreath Deligne CategoryNyobe Likeng, Samuel Aristide 05 October 2020 (has links)
We define a faithful linear monoidal functor from the partition category, and hence from Deligne's category Rep(S_t), to the additive Karoubi envelope of the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions.
We then generalize the above results to any group G, the case where G is the trivial group corresponding to the case mentioned above. Thus, to every group G we associate a linear monoidal category Par(G) that we call a group partition category. We give explicit bases for the morphism spaces and also an efficient presentation of the category in terms of generators and relations. We then define an embedding of Par(G) into the group Heisenberg category associated to G. This embedding intertwines the natural actions of both categories on modules for wreath products of G. Finally, we prove that the additive Karoubi envelope of Par(G) is equivalent to a wreath product interpolating category introduced by Knop, thereby giving a simple concrete description of that category.
|
58 |
An Algebra Isomorphism for the Landau-Ginzburg Mirror Symmetry ConjectureJohnson, Jared Drew 07 July 2011 (has links) (PDF)
Landau-Ginzburg mirror symmetry takes place in the context of affine singularities in CN. Given such a singularity defined by a quasihomogeneous polynomial W and an appropriate group of symmetries G, one can construct the FJRW theory (see [3]). This construction fills the role of the A-model in a mirror symmetry proposal of Berglund and H ubsch [1]. The conjecture is that the A-model of W and G should match the B-model of a dual singularity and dual group (which we denote by WT and GT). The B-model construction is based on the Milnor ring, or local algebra, of the singularity. We verify this conjecture for a wide class of singularities on the level of Frobenius algebras, generalizing work of Krawitz [10]. We also review the relevant parts of the constructions.
|
59 |
k-S-RingsTurner, Emma Louise 02 July 2012 (has links) (PDF)
For a finite group G we study certain rings called k-S-rings, one for each non-negative integer k, where the 1-S-ring is the centralizer ring of G. These rings have the property that the (k+1)-S-ring determines the k-S-ring. We show that the 4-S-ring determines G when G is any group with finite classes. We show that the 3-S-ring determines G for any finite group G, thus giving an answer to a question of Brauer. We show the 2-characters defined by Frobenius and the extended 2-characters of Ken Johnson are characters of representations of the 2-S-ring of G. We find the character table for the 2-S-ring of the dihedral groups of order 2n, n odd, and classify groups with commutative 3-S-ring.
|
60 |
Normal <i>p</i>-Complement TheoremsFarris, Lindsey 21 May 2018 (has links)
No description available.
|
Page generated in 0.0435 seconds