61 |
On Sharp Permutation Groups whose Point Stabilizers are Certain Frobenius GroupsNorman, Blake Addison 05 1900 (has links)
We investigate non-geometric sharp permutation groups of type {0,k} whose point stabilizers are certain Frobenius groups. We show that if a point stabilizer has a cyclic Frobenius kernel whose order is a power of a prime and Frobenius complement cyclic of prime order, then the point stabilizer is isomorphic to the symmetric group on 3 letters, and there is up to permutation isomorphism, one such permutation group. Further, we determine a significant structural description of non-geometric sharp permutation groups of type {0,k} whose point stabilizers are Frobenius groups with elementary abelian Frobenius kernel K and Frobenius complement L with |L| = |K|-1. As a result of this structural description, it is shown that the smallest non-solvable Frobenius group cannot be a point stabilizer in a non-geometric sharp permutation group of type {0,k}.
|
62 |
Classification of Quantum Graphs on M? and algebraic characterization of properties of quantum graphs / M?上の量子グラフの分類と量子グラフの性質の代数的特徴付けMatsuda, Junichiro 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25089号 / 理博第4996号 / 新制||理||1714(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 COLLINSBenoit Vincent Pierre, 教授 泉 正己, 准教授 山下 真由子 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
63 |
Équations différentielles issues des vecteurs singuliers des représentations de l'algèbre de VirasoroEon, Sylvain January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
64 |
Invariants numériques de catégories de fusion : calculs et applications / Numerical invariants of fusion categories : calculations and applicationsMignard, Michaël 14 December 2017 (has links)
Les catégories de fusion pointées sont des catégories de fusion pour lesquelles les objets simples sont inversibles. Nous développons des méthodes basés par ordinateur pour classifier les catégories pointées à équivalence de Morita près, et les appliquons aux catégories pointées de dimensions comprises entre 2 et 32. Nous prouvons qu'il existe 1126 classes de Morita pour de telles catégories. Aussi, nous prouvons que les indicateurs de Frobenius-Schur du centre d'une catégorie pointée de dimension inférieure à 32, accompagnés de structure enrubannée de ce centre, déterminent sa classe de Morita. Ceci est faux en général: les données modulaires, et donc a fortiori les indicateurs et structures enrubannées, ne distinguent pas les catégories modulaires. Nous donnons une famille d'exemples ; en réalité, il existe un nombre arbitrairement grand de catégories modulaires deux-à-deux non équivalentes qui peuvent partager les mêmes données modulaires. / Pointed fusion categories are fusion categories in which all simple objects are invertible. We develop computer-based methods to classify pointed categories up to Morita equivalence, and apply them to pointed fusion categories of dimension from 2 to 31. We prove that there are 1126 Morita classes of such categories. Also, we prove that the Frobenius-Schur indicators of the centers of a pointed category of dimension less than 32, along with its ribbon twist, determine its Morita class. This is not true in general: the modular data, and a fortiori the indicators and the ribbon twists, do not distinguish modular categories. We give a family of examples; in fact, arbitrarly many pairwise non-equivalent modular categories can share the same modular data.
|
65 |
Équations différentielles issues des vecteurs singuliers des représentations de l'algèbre de VirasoroEon, Sylvain January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
66 |
Matrices de Cartan, bases distinguées et systèmes de Toda / Cartan matrix, distinguished basis and Toda's systemsBrillon, Laura 27 June 2017 (has links)
Dans cette thèse, nous nous intéressons à plusieurs aspects des systèmes de racines des algèbres de Lie simples. Dans un premier temps, nous étudions les coordonnées des vecteurs propres des matrices de Cartan. Nous commençons par généraliser les travaux de physiciens qui ont montré que les masses des particules dans la théorie des champs de Toda affine sont égales aux coordonnées du vecteur propre de Perron -- Frobenius de la matrice de Cartan. Puis nous adoptons une approche différente, puisque nous utilisons des résultats de la théorie des singularités pour calculer les coordonnées des vecteurs propres de certains systèmes de racines. Dans un deuxième temps, en s'inspirant des idées de Givental, nous introduisons les matrices de Cartan q-déformées et étudions leur spectre et leurs vecteurs propres. Puis, nous proposons une q-déformation des équations de Toda et construisons des 1-solitons solutions en adaptant la méthode de Hirota, d'après les travaux de Hollowood. Enfin, notre intérêt se porte sur un ensemble de transformations agissant sur l'ensemble des bases ordonnées de racines comme le groupe de tresses. En particulier, nous étudions les bases distinguées, qui forment l'une des orbites de cette action, et des matrices que nous leur associons. / In this thesis, our goal is to study various aspects of root systems of simple Lie algebras. In the first part, we study the coordinates of the eigenvectors of the Cartan matrices. We start by generalizing the work of physicists who showed that the particle masses of the affine Toda field theory are equal to the coordinates of the Perron -- Frobenius eigenvector of the Cartan matrix. Then, we adopt another approach. Namely, using the ideas coming from the singularity theory, we compute the coordinates of the eigenvectors of some root systems. In the second part, inspired by Givental's ideas, we introduce q-deformations of Cartan matrices and we study their spectrum and their eigenvectors. Then, we propose a q-deformation of Toda's equations et compute 1-solitons solutions, using the Hirota's method and Hollowood's work. Finally, our interest is focused on a set of transformations which induce an action of the braid group on the set of ordered root basis. In particular, we study an orbit for this action, the set of distinguished basis and some associated matrices.
|
67 |
Interacting Hopf Algebras- the Theory of Linear Systems / Interacting Hopf Algebras - la théorie des systèmes linéairesZanasi, Fabio 05 October 2015 (has links)
Dans cette thèse, on présente la théorie algébrique IH par le biais de générateurs et d’équations.Le modèle libre de IH est la catégorie des sous-espaces linéaires sur un corps k. Les termes de IH sont des diagrammes de cordes, qui, selon le choix de k, peuvent exprimer différents types de réseaux et de formalismes graphiques, que l’on retrouve dans des domaines scientifiques divers, tels que les circuits quantiques, les circuits électriques et les réseaux de Petri. Les équations de IH sont obtenues via des lois distributives entre algèbres de Hopf – d’où le nom “Interacting Hopf algebras” (algèbres de Hopf interagissantes). La caractérisation via les sous-espaces permet de voir IH comme une syntaxe fondée sur les diagrammes de cordes pour l’algèbre linéaire: les applications linéaires, les espaces et leurs transformations ont chacun leur représentation fidèle dans le langage graphique. Cela aboutit à un point de vue alternatif, souvent fructueux, sur le domaine.On illustre cela en particulier en utilisant IH pour axiomatiser la sémantique formelle de circuits de calculs de signaux, pour lesquels on s’intéresse aux questions de la complète adéquation et de la réalisabilité. Notre analyse suggère un certain nombre d’enseignements au sujet du rôle de la causalité dans la sémantique des systèmes de calcul. / We present by generators and equations the algebraic theory IH whose free model is the category oflinear subspaces over a field k. Terms of IH are string diagrams which, for different choices of k, expressdifferent kinds of networks and graphical formalisms used by scientists in various fields, such as quantumcircuits, electrical circuits and Petri nets. The equations of IH arise by distributive laws between Hopfalgebras - from which the name interacting Hopf algebras. The characterisation in terms of subspacesallows to think of IH as a string diagrammatic syntax for linear algebra: linear maps, spaces and theirtransformations are all faithfully represented in the graphical language, resulting in an alternative, ofteninsightful perspective on the subject matter. As main application, we use IH to axiomatise a formalsemantics of signal processing circuits, for which we study full abstraction and realisability. Our analysissuggests a reflection about the role of causality in the semantics of computing devices.
|
68 |
Perron-Frobenius' Theory and ApplicationsEriksson, Karl January 2023 (has links)
This is a literature study, in linear algebra, about positive and nonnegative matrices and their special properties. We say that a matrix or a vector is positive/nonnegative if all of its entries are positive/nonnegative. First, we study some generalities and become acquainted with two types of nonnegative matrices; irreducible and reducible. After exploring their characteristics we investigate and prove the two main theorems of this subject, namely Perron's and Perron-Frobenius' theorem. In short Perron's theorem from 1907 tells us that the spectral radius of a positive matrix is a simple eigenvalue of the matrix and that its eigenvector can be taken to be positive. In 1912, Georg Frobenius generalized Perron's results also to irreducible nonnegative matrices. The two theorems have a wide range of applications in both pure mathematics and practical matters. In real world scenarios, many measurements are nonnegative (length, time, amount, etc.) and so their mathematical formulations often relate to Perron-Frobenius theory. The theory's importance to linear dynamical systems, such as Markov chains, cannot be overstated; it determines when, and to what, an iterative process will converge. This result is in turn the underlying theory for the page-ranking algorithm developed by Google in 1998. We will see examples of all these applications in chapters four and five where we will be particularly interested in different types of Markov chains. The theory in this thesis can be found in many books. Here, most of the material is gathered from Horn-Johnson [5], Meyer [9] and Shapiro [10]. However, all of the theorems and proofs are formulated in my own way and the examples and illustrations are concocted by myself, unless otherwise noted. / Det här är en litteraturstudie, inom linjär algebra, om positiva och icke-negativa matriser och deras speciella egenskaper. Vi säger att en matris eller en vektor är positiv/icke-negativ om alla dess element är positiva/icke-negativa. Inledningsvis går vi igenom några grundläggande begrepp och bekanta oss med två typer av icke-negativa matriser; irreducibla och reducibla. Efter att vi utforskat deras egenskaper så studerar vi och bevisar ämnets två huvudsatser; Perrons och Perron-Frobenius sats. Kortfattat så säger Perrons sats, från 1907, att spektralradien för en positiv matris är ett simpelt egenvärde till matrisen och att dess egenvektor kan tas positiv. År 1912 så generaliserade Georg Frobenius Perrons resultat till att gälla också för irreducibla icke-negativa matriser. De två satserna har både många teoretiska och praktiska tillämpningar. Många verkliga scenarios har icke-negativa mått (längd, tid, mängd o.s.v) och därför relaterar dess matematiska formulering till Perron-Frobenius teori. Teorin är betydande även för linjära dynamiska system, såsom Markov-kedjor, eftersom den avgör när, och till vad, en iterativ process konvergerar. Det resultatet är i sin tur den underliggande teorin bakom algoritmen PageRank som utvecklades av Google år 1998. Vi kommer se exempel på alla dessa tillämpningar i kapitel fyra och fem, där vi speciellt intresserar oss för olika typer av Markov-kedjor. Teorin i den här artikeln kan hittas i många böcker. Det mesta av materialet som presenteras här har hämtats från Horn-Johnson [5], Meyer [9] och Shapiro [10]. Däremot är alla satser och bevis formulerade på mitt eget sätt och alla exempel, samt illustrationer, har jag skapat själv, om inget annat sägs.
|
69 |
Lattices and Their Application: A Senior ThesisGoodwin, Michelle 01 January 2016 (has links)
Lattices are an easy and clean class of periodic arrangements that are not only discrete but associated with algebraic structures. We will specifically discuss applying lattices theory to computing the area of polygons in the plane and some optimization problems. This thesis will details information about Pick's Theorem and the higher-dimensional cases of Ehrhart Theory. Closely related to Pick's Theorem and Ehrhart Theory is the Frobenius Problem and Integer Knapsack Problem. Both of these problems have higher-dimension applications, where the difficulties are similar to those of Pick's Theorem and Ehrhart Theory. We will directly relate these problems to optimization problems and operations research.
|
70 |
Ortho-ambivalence des groupes finis / Ortho-ambivalence of finite groupsNtabuhashe Zahinda, Obed 16 May 2008 (has links)
Soient G un groupe fini et k un corps dont la caractéristique ne divise pas l’ordre de G. Il est établi, d’une part que pour que tous les caractères irréductibles de G soient réels, il faut et il suffit que G soit ambivalent; d’autre part, que pour que la restriction de l’involution canonique à chaque composante simple de l’algèbre de groupe kG soit une involution de première espèce, il faut et il suffit que G soit ambivalent. G est dit ortho-ambivalent par rapport à k si la restriction de l’involution canonique à chaque composante simple de l’algèbre de groupe kG est une involution orthogonale.
Dans cette thèse, nous démontrons que les propositions suivantes sont équivalentes : (i) G est ortho-ambivalent par rapport à k ; (ii) G est totalement orthogonal ; (iii) G est ambivalent et tout caractère irréductible de G est de type 1 ; (iv) G est ambivalent et la somme des degrés des caractères irréductibles de G égale le nombre d’éléments de G dont les carrés sont égaux à l’élément neutre de G ; de plus, si la caractéristique de k est différente de 2, ces propositions sont équivalentes à la suivante : (v) G est ambivalent et le premier groupe de Witt tordu de la catégorie des kG-modules libres finiment engendrés munie d’une dualité définie en fonction de l’involution canonique sur kG est trivial.
L’étude des 2-groupes spéciaux occupe une partie importante. Nous démontrons qu’un 2-groupe spécial ambivalent G d’application quadratique q est ortho-ambivalent par rapport à k si et seulement si pour toute forme linéaire s sur le centre de G (par rapport au corps à 2 éléments), l’invariant d’Arf de la forme quadratique induite par le transfert de q par s est nul. / Let G be a finite group and k a field whose characteristic does not divide the order of G. It is established, on the one hand that all irreducible characters of G are real if and only if G is ambivalent; in addition, that the restriction of the canonical involution on each simple component of the group algebra kG is an involution of first kind if and only if G is ambivalent. We say that G is ortho-ambivalent compared to k if the restriction of the canonical involution on each simple component of the group algebra kG is an orthogonal involution.
In this thesis, we show that the following conditions are equivalent: (I) G is ortho-ambivalent compared to k; (II) G is totaly orthogonal; (III) G is ambivalent and any irreducible character of G is of type 1; (iv) G is ambivalent and the sum of the degrees of the irreducible characters of G equalizes the number of elements of G whose squares are equal to the neutral element of G; moreover, if the characteristic of k is different from 2, these conditions are equivalent to the following one: (v) G is ambivalent and the first twisted Witt group of the category of the free kG-modules finitely generated provided with a duality defined according to the canonical involution on kG is trivial.
The study of the special 2-groups occupies a great part. We show that an ambivalent special 2-group G of quadratic application q is ortho-ambivalent compared to k if and only if for any linear form s on the center of G (compared to the field with 2 elements), the Arf invariant of the quadratic form induced by the transfer of q by s is null.
|
Page generated in 0.0553 seconds