• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 5
  • Tagged with
  • 35
  • 35
  • 20
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Control of scattered coherent light and photoacoustic imaging : toward light focusing in deep tissue and enhanced, sub-acoustic resolution photoacoustic imaging / Contrôle de la lumière cohérente diffusée et imagerie photoacoustique : focalisation de la lumière en profondeur dans les tissus biologiques et imagerie photoacoustique améliorée avec résolution sub-acoustique

Chaigne, Thomas 07 January 2016 (has links)
En microscopie, savoir focaliser la lumière à l’échelle micrométrique est déterminant. Dans les tissus biologiques néanmoins, les inhomogénéités du milieu diffusent la lumière, empêchant toute focalisation au-delà d’une profondeur de l’ordre du millimètre. Des techniques de façonnage de front d’onde ont été développées afin de pré-compenser la distorsion du faisceau lumineux induite par la propagation à travers un milieu diffusant. Pour parvenir à focaliser la lumière à l’intérieur même du milieu diffusant, l’enjeu est de mesurer l’intensité lumineuse en profondeur de manière non invasive. Nous proposons d’utiliser l’effet photoacoustique pour sonder cette intensité. Une structure optiquement absorbante éclairée par une impulsion lumineuse émet en effet un signal ultrasonore, dont l’amplitude est proportionnelle à l’intensité lumineuse. Ces ultrasons se propagent de façon quasi-balistique dans les tissus mous et peuvent donc être détectés à l’aide d’un transducteur acoustique externe. Cette mesure permet donc de déterminer l’intensité lumineuse éclairant l’absorbeur. Nous avons montré qu’il était possible d’utiliser l'imagerie photoacoustique pour mesurer la matrice de transmission d’un échantillon diffusant. Cette caractérisation nous permet de focaliser la lumière sur des structures absorbantes et de sonder des propriétés mésoscopiques du milieu diffusant. Nous avons montré que la large bande spectrale des signaux photoacoustiques permet d’améliorer la focalisation. Enfin, nous avons montré que l’utilisation d’une source de lumière cohérente permet de pallier certains artefacts de l’imagerie photoacoustique, ainsi que de franchir la limite de résolution acoustique. / Light focusing is a crucial requirement for high resolution optical imaging. In biological tissue though, refractive index inhomogeneities scatter light, preventing any focusing beyond one millimeter. Wavefront shaping techniques have been recently developed to partially compensate for light scattering after propagation through a scattering medium. These techniques require a measurement of the light intensity at the target point. These techniques hold much promise for performing wavefront correction in order to focus light deep inside scattering media. This would require a non-invasive measure of the light intensity at depth. In this PhD study, we propose to use the photoacoustic effect for such task. An optically absorbing structure under pulsed illumination indeed generates ultrasonic waves, whose amplitude is proportional to the absorbed light intensity. These ultrasounds mostly propagate in a ballistic way, and can therefore be detected with an external transducer. We have shown that photoacoustic imaging could be used to measure the transmission matrix of a scattering sample, enabling to focus light on absorbing structures as well as to retrieve mesoscopic properties of the medium. We have shown that the broadband spectral content of the photoacoustic signals can be harnessed to improve the focusing performances. Finally, we demonstrated that coherent illumination could be used to remove fundamentals artefacts, as well as to break the acoustic resolution limit of conventional deep tissue photoacoustic imaging.
12

Étude et contrôle cohérent du champ proche optique de milieux diélectriques désordonnés et de films semi-continus métal-diélectriques / Study and coherent control of the optical near field on disordered dielectric media and semi-continuous metal-dielectric films

Bondareff, Pierre 18 July 2014 (has links)
Un défi actuel dans le domaine de l'optique est de mieux comprendre les effets de champ proches optiques des systèmes et de pouvoir agir dessus. C'est dans ce contexte que j'explore tout au long de cette thèse ces notions appliquées aux milieux 3D diélectriques désordonnés et aux films désordonnés métal-diélectriques. Pour les milieux 3D, nous avons choisi une approche par un montage de microscopie de champ proche pour faire la mesure du champ proche optique. Nous avons pour cela dû faire un travail en amont sur la préparation des échantillons pour éviter les artefacts de mesure. Ces mesures ont révélés des structures intéressantes. Nous avons ensuite étudié les modes optiques sur les films métal-diélectriques et montré qu'il existe des modes étendus pour certaine valeurs de la faction surfacique de métal déposée. Nous avons quantifié leur extension par la mesure de la longueur d'interaction et mesuré des valeurs de l'ordre de la dizaine de microns, suffisant pour être contrôlé depuis le champ lointain. Ces mesures ont ouvert la voie au contrôle du front d'onde du faisceau incident dans l'objectif de la focalisation en champ proche de la lumière. Ceci a pu être réalisé grâce à l'utilisation d'un modulateur spatial de lumière pour le contrôle du front d'onde et à un signal non-linéaire de luminescence à deux photons pour la mesure du champ proche optique. Nous obtenons la focalisation en champ proche de l'énergie d'un facteur supérieur à dix. Enfin, la technique de microscopie de champ proche a pu être implémentée et couplée au contrôle de front d'onde et une première optimisation a pu être obtenue. Cela reste néanmoins un travail préliminaire. / One important challenge to address in the optical field is a better understanding of the optical near field of systems and how we can interact with them from the far-field. It is in this regard that I studied and controlled of the near field of both 3D disordered dielectric media and metal-dielectric disordered films. For 3D media, we used a near-field microscope to measure the optical field on their surface. To reach a free-artefact measure, we had to carefully prepare the sample by minimising the rugosity. In a second part, we studied optical modes on metal-dielectric films et we showed that it exists extended modes for some specific values of metal filling fraction of the sample. Extension of the modes has been quantified by measuring the interaction length and has been found in the order of 10 $\mu$m, enough to allow a far field control of the modes. These measurements opened the way for wavefront control of the incident beam in order to focus light in the near field of the sample. We use a spatial light modulator to control the incident wavefront and a non-linear signal (two photons luminescence - TPL) for the near-field measurement of the optical field. We could reach focusing of the energy by a factor more than ten. Finally, the SNOM technique has been coupled to the wavefront shaping system and we get preliminary measurements of optimisation in the near-field by this technique.
13

L'imageur Interférométrique de Fresnel: un instrument spatial pour l'observation à haute résolution angulaire

Serre, Denis 04 October 2007 (has links) (PDF)
L'Imageur Interférométrique de Fresnel est un concept de télescope spatial dont l'objectif est d'améliorer significativement les capacités d'imagerie à haute résolution angulaire et haute dynamique, et ce dans les domaines spectraux ultraviolet, visible et infrarouge.<br /><br />Dans un télescope classique, la focalisation s'obtient par l'utilisation d'un miroir; dans le cas de l'Imageur Interférométrique de Fresnel, elle s'obtient par l'utilisation d'un masque diffractant comportant des dizaines ou des centaines de milliers d'ouvertures individuelles, réparties sur un support plan selon une loi se rapprochant de la disposition des anneaux d'une lentille zonée de Soret. Les contraintes de masse et de précision de fabrication de l'optique focalisatrice sont ainsi considérablement relâchées, ouvrant une voie pour concevoir un observatoire possédant une pupille d'entrée de très grande dimension. En revanche, de par la nature dispersive de cette optique, un module focal placé à grande distance est nécessaire pour achromatiser et mettre en forme l'image.<br /><br />La première partie de cette thèse est consacrée à la détermination des caractéristiques des éléments constitutifs de ce type d'imageur, et à l'étude des performances et limitations associées. La deuxième partie est elle dévolue à la description et à la présentation des performances d'un prototype sol montrant expérimentalement la validité du concept. Enfin, la troisième partie étudie les objectifs astrophysiques possibles d'un Imageur de Fresnel opérationnel.
14

Imagerie microscopique de champs électromagnétiques par interférométrie à décalage quadri-latéral. Applications à la biologie / Microscopic imaging of electromagnetic field by quadri-wave lateral shearing interferometry. Applications to biology

Bon, Pierre 28 November 2011 (has links)
Cette thèse a pour but d'étudier l'utilisation d'un analyseur de front d'onde basé sur l'interférométrie à décalage quadri-latéral pour l'imagerie microscopique en transmission. Cette technique d'interférométrie, développée initialement par la société Phasics (Palaiseau) pour les marchés de la métrologie optique et de la caractérisation de faisceaux laser essentiellement, peut aussi permettre d'obtenir la cartographie d'un champ électromagnétique complexe par mesure de front d'onde. En l'utilisant sur un microscope en condition d'imagerie, nous avons obtenu des images de l'intensité et de la différence de chemin optique introduite par un échantillon semi-transparent, définissant ainsi une nouvelle technique de contraste de phase quantitatif. Il s'agit d'un travail codirigé entre l'Institut Fresnel et l'entreprise Phasics (convention CIFRE), mené en collaboration avec le Centre d'Immunologie de Marseille Luminy. Dans cette thèse, nous discutons dans un premier temps de l'utilisation de l'analyseur en tant que détecteur placé dans le plan image d'un microscope optique classique, puis nous considérons deux modèles pour la formation des images de différence de chemin optique. Le premier modèle, dit projectif dans l'espace objet, suppose une mesure directe par l'analyseur de la différence de chemin optique locale introduite par l'échantillon. Nous montrons que cette hypothèse est valable pour deux applications particulières : la détermination de la quantité de matière sèche au sein d'un échantillon biologique, et la cartographie de la distribution de température induite par échauffement de particules d'or dans le plan objet du microscope. Le deuxième modèle prend en compte les effets de diffraction simple par l'échantillon et de filtrage par le système d'imagerie, en considérant l'angle sous lequel l'échantillon est illuminé. / The aim of this thesis is the use of a quadriwave lateral shearing interferometer for transmission microscopic imaging. First developped for optical metrology and laser beam caracterisation by the Phasics company (Palaiseau), this interferometric technique gives complexe electromagnetic field cartography by wavefront sensing. Using a microscope in imaging conditions, we obtained intensity and optical path difference images introduced by a semi-transparent sample. Thereby, we defined a new quantitative phase contrast technique.This work is co-directed by the Fresnel Institute and the Phasics company (CIFRE convention), in collaboration with the Centre Immunologique de Marseille Luminy. In this thesis, first we discuss the wavefront sensor use as a sensor plugged on the classical optical microscope image plane ; then we consider two models for optical path difference image formation. The first one, named object space projection, supposes a direct measurement of the optical path difference introduced by a sample. We show that this hypothesis is valid for two particular applications : dry matter determination within a biological sample, and temperature distribution induced by gold nano-particule heating. Thesecond model takes into account the simple sample diffraction and the optical device filtering depending on the illumination angle. This second approach allows us to build a model for intensity and optical path difference image formation for any planewave illumination. So we studied the image formation from a spatially partial incoherent illumination to a complete incoherent illumination. We made electromagnetic field measurements with the wavefront sensor in this last case. Then we discuss semi-transparent tomographic reconstruction by measurements in different imaging planes.One chapter is dedicated to quantitative phase imaging in biology, in particular with mitotic index determination within a cell population.
15

Miroirs actifs de l’espace : Développement de systèmes d’optique active pour les futurs grands observatoires / Space active mirrors : Active optics developments for future large observatories

Laslandes, Marie 06 November 2012 (has links)
Le besoin tant en haute qualité d'imagerie qu'en structures légères est l'un des principaux moteurs pour la conception des télescopes spatiaux. Un contrôle efficace du front d'onde va donc devenir indispensable dans les futurs grands observatoires spatiaux, assurant une bonne performance optique tout en relâchant les contraintes sur la stabilité globale du système. L'optique active consiste à contrôler la déformation des miroirs, cette technique peut être utilisée afin de compenser la déformation des grands miroirs primaires, afin de permettre l'utilisation d'instrument reconfigurable ou afin de fabriquer des miroirs asphériques avec le polissage sous contraintes. Dans ce manuscrit, la conception de miroirs actifs dédiés à l'instrumentation spatiale est présentée. Premièrement, un système compensant la déformation d'un grand miroir allégé dans l'espace est conçu et ses performances sont démontrées expérimentalement. Avec 24 actionneurs, le miroir MADRAS (Miroir Actif Déformable et Régulé pour Applications Spatiales) effectuera une correction efficace du front d'onde dans un relais de pupille du télescope. Deuxièmement, un harnais de déformation pour le polissage sous contraintes des segments du télescope géant européen de 39 m (E-ELT) est présenté. La performance du procédé est prédite et optimisée avec des analyses éléments finis et la production en masse des segments est considérée. Troisièmement, deux concepts originaux de miroirs déformables avec un nombre minimal d'actionneurs ont été développés. VOALA (Variable Off-Axis parabola) est un système à trois actionneurs et COMSA (Correcting Optimized Mirror with a Single Actuator) est un système à un actionneur. / The need for both high quality images and light structures is one of the main driver in the conception of space telescopes. An efficient wave-front control will then become mandatory in the future large observatories, ensuring the optical performance while relaxing the specifications on the global system stability. Consisting in controlling the mirror deformation, active optics techniques can be used to compensate for primary mirror deformation, to allow the use of reconfigurable instruments or to manufacture aspherical mirror with stress polishing. In this manuscript, the conception of active mirrors dedicated to space instrumentation is presented. Firstly, a system compensating for large lightweight mirror deformation in space, is designed and its performance are experimentally demonstrated. With 24 actuators, the MADRAS mirror (Mirror Actively Deformed and Regulated for Applications in Space) will perform an efficient wave-front correction in the telescope's pupil relay. Secondly, a warping harness for the stress polishing of the 39 m European Extremely Large Telescope segments is presented. The performance of the process is predicted and optimized with Finite Element Analysis and the segments mass production is considered. Thirdly, two original concepts of deformable mirrors with a minimum number of actuators have been developed. The Variable Off-Axis parabola (VOALA) is a 3-actuators system and the Correcting Optimized Mirror with a Single Actuator (COMSA) is a 1-actuator system.
16

Microscopie et spectroscopie de phase. Développements en diffusion Raman cohérente (CRS) et en thermo-plasmonique / Phase microscopy and spectroscopy for Coherent Raman Scattering (CRS) and Thermoplasmonics

Berto, Pascal 28 January 2013 (has links)
La microscopie par diffusion Raman cohérente anti-Stokes (CARS) est une technique de spectro-imagerie qui permet de cartographier les modes vibrationnels intra-moléculaires d'un échantillon biologique, sans nécessité de marquage préalable. La mesure CARS est cependant dégradée par un "fond non-résonant" qui détériore le contraste. Récemment, la microscopie par diffusion Raman stimulée (SRS) fut proposée comme une alternative à la microscopie CARS, permettant d'obtenir une imagerie "sur fond noir". Dans cette thèse, nous décrivons le développement d'un microscope SRS. Nous évaluons le caractère spécifique des contrastes CARS et SRS dans le cadre d'une application biomédicale concrète, à savoir la détection de mélanomes humains. Nous présentons une description exhaustive des phénomènes physiques pouvant conduire à des artéfacts de mesure en SRS. Nous proposons finalement une technique basée sur l'utilisation de trois faisceaux d'excitation à trois couleurs, permettant de supprimer ces artéfacts. Dans une seconde partie, nous nous intéressons à la microscopie CARS en configuration plein champ. Nous proposons une méthode permettant de supprimer le fond non-résonant. Celle-ci est basée sur une analyse de front d'onde du champ anti-Stokes. En guise d'ouverture, nous proposons une technique - toujours basée sur l'analyse de front d'onde - permettant de réaliser la spectroscopie d'absorption quantitative de nano-objets. Nous illustrons le potentiel de cette technique en réalisant des mesures sur des matrices de nanoparticules d'or et sur des nanoparticules uniques. / Coherent Anti-Stokes Raman Scattering (CARS) microscopy is a technique that can map the spatial distribution of intra-molecular vibrational modes of a biological sample. This method thus provides molecular specificity, without staining the sample. However, CARS signal is hampered by a "non-resonant background" which reduces the contrast. Recently, Stimulated Raman Scattering (SRS) microscopy has been proposed as an alternative to CARS microscopy because it is a background free method. In this thesis, we describe the development of a SRS microscope. We evaluate the specificity of CARS and SRS contrasts in a concrete biomedical application, the detection of human melanomas. We present a comprehensive description of the physical phenomena that can lead to artifacts in SRS microscopy. We show that the scattering properties of the sample can lead to artifacts. We propose a technique based on three excitation beams of different color which suppresses these artifacts. In the second part, we focus on CARS microscopy in a wide-field configuration. We implement a technique to remove the non-resonant background. This method is based on wavefront sensing of the anti-Stokes Field by quadriwave lateral sharing interferometry (QWLSI). We demonstrate that the measurement of the intensity and phase of the complex CARS field allows to retrieve the spontaneous Raman scattering spectrum. As a perspective, we propose a technique, still based on wavefront sensing by QWLSI, to achieve quantitative absorption spectroscopy of nano-objects. We illustrate the potential of this technique by performing measurements on arrays of gold nanoparticles and on single nanoparticles.
17

Mise en phase des grands interféromètres: Méthode de La Diversité de Phase Chromatique - Développement et Implémentation sur le démonstrateur hypertélescope fibré SIRIUS

Tarmoul, Nassima 10 November 2011 (has links) (PDF)
Afin d'augmenter les capacités d'imagerie et de résolution des instruments d'observation en astronomie, la prospective Haute Résolution Angulaire propose d'augmenter le nombre de sous-pupilles des interféromètres optiques. Associés à des techniques de densification de pupille, les futurs interféromètres seront capables d'imager des cibles astrophysiques faibles et/ou de taille apparente réduite. Il en résulte des contraintes instrumentales constituant le défi technique et technologique dans lequel s'inscrit mon travail de Thèse. Les conditions de propagation et la qualité de recombinaison des faisceaux collectés par chaque sous-pupille régissent les performances en termes de stabilité de l'image et de sensibilité des réseaux optiques. Pour garantir un mélange interférométrique cohérent et la possibilité d'observer sur des temps d'intégrations supérieurs à quelques millisecondes, il est nécessaire de maintenir la différence de marche optique à une valeur inférieure à la fraction de longueur d'onde grâce à un dispositif de cophasage. Je propose une méthode dédiée à la mise en phase des grands interféromètres : la Diversité de Phase Chromatique. Celle-ci est fondée sur une analyse spectrale des images à plusieurs longueurs d'onde permettant de déterminer en temps réel les différences de marche optique à compenser par les lignes à retard de l'instrument. Après une étude théorique et numérique de la méthode à travers l'analyse de cas réalistes, je présente sa mise en œuvre pratique sur le banc hypertélescope fibré SIRIUS développé à l'Observatoire de la Côte d'Azur.
18

ANALYSE DE FRONT D'ONDE POUR LES OPTIQUES ADAPTATIVES DE NOUVELLE GENERATION

Nicolle, Magalie 19 December 2006 (has links) (PDF)
La performance d'un système d'optique adaptative (AO) est intrinsèquement liée à sa capacité à mesurer les déformations subies par le front d'onde incident lors de sa traversée de l'atmosphère. Or un certain nombre de limitations restreignent l'efficacité de cette analyse de front d'onde. Les plus importantes sont le bruit de mesure et l'anisoplanétisme. Le premier limite la magnitude des objets astronomiques pouvant servir de guides aux systèmes d'AO, tandis que le second restreint leur champ corrigé à quelques dizaines de secondes d'arc, du fait de la distribution volumique de la turbulence atmosphérique. A elles deux, ces limitations réduisent à quelques pourcents la couverture de ciel des instruments assistés par AO. Pour cette raison, les nouvelles générations d'optiques adaptatives ont pour objectif soit la très haute performance, impliquant entre autres une bonne robustesse au bruit de mesure, soit l'élargissement du champ corrigé, impliquant la connaissance de la répartition 3D de la turbulence atmosphérique. Pour ces systèmes d'AO à large champ, il est indispensable d'utiliser plusieurs directions d'analyse. La problématique de l'analyse de front d'onde s'articule alors autour de trois pôles : les étoiles guides dont on dispose pour effectuer la multi-analyse, le concept d'analyse de front d'onde considéré pour mesurer le volume de turbulence et la capacité des senseurs de front d'onde à fournir des mesures de qualité. L'objectif de cette thèse est d'étudier chacun de ces trois aspects. Ainsi, une redéfinition de la notion de couverture de ciel est proposée pour les AO à large champ, permettant de prendre en compte le nombre d'étoiles guides et leur magnitude, mais également la fraction du champ scientifique qu'elles permettent de couvrir, le concept d'analyse de front d'onde considéré et l'objectif de performance de l'instrument. Par ailleurs une étude comparative des concepts d'analyse de front d'onde Star Oriented et Layer Oriented est présentée, sur laquelle on s'appuie pour proposer une optimisation de chaque concept. On montre ainsi qu'une fois optimisés ils présentent tous deux des performances très proches. Enfin, on propose dans un troisième temps une étude comparative de plusieurs estimateurs de pente pour l'analyseur Shack-Hartmann. On étudie en particulier l'estimateur centre de gravité pondéré, qui offre à la fois une bonne robustesse au bruit et de bonnes propriétés de linéarité. Cette dernière étude est utile aussi bien pour l'AO à large champ que pour l'AO à très haute performance.
19

Solution de viscosité des équations Hamilton-Jacobi et minmax itérés

Wei, Qiaoling 30 May 2013 (has links) (PDF)
Dans cette thèse, nous étudions les solutions des équations Hamilton-Jacobi. Plus précisément, nous comparons la solution de viscosité, obtenue comme limite de solutions de l'équation perturbée par un petit terme de diffusion, et la solution minmax, définie géométriquement à partir d'une fonction génératrice quadratique à l'infini. Dans la littérature, il y a des cas bien connus où les deux coïncident, par exemple lorsque le hamiltonien est convexe ou concave, le minmax pouvant alors être réduit à un min ou un max. Mais les solutions minmax et de viscosité diffèrent en général. Nous construisons des "minmax itérés" en répétant pas à pas la procédure de minmax et démontrons que, quand la taille du pas tend vers zéro, les minmax itérés tendent vers la solution de viscosité. Dans une deuxième partie, nous étudions les lois de conservation en dimension un d'espace par le méthode de "front tracking". Nous montrons que dans le cas où la donnée initiale est convexe, la solution de viscosité et le minmax sont égaux. Et comme application, nous décrivons sur des exemples la manière dont sont construites les singularités de la solution de viscosité. Pour finir, nous montrons que la notion de minmax n'est pas aussi évidente qu'il y paraît.
20

Matricial approaches for spatio-temporal control of light in multiple scattering media / Approches matricielles pour le contrôle spatio-temporel de la lumière dans des milieux de diffusion multiples

Mounaix, Mickaël 08 November 2017 (has links)
L’imagerie optique à travers des milieux diffusants, comme des milieux biologiques ou de la peinture blanche, reste un challenge car l’information spatiale portée par la lumière incidente est mélangée par les évènements multiples de diffusion. Toutefois, les modulateurs spatiaux de lumière (SLM) disposent de millions de degrés de liberté pour contrôler le profil spatial de la lumière en sortie du milieu, en forme de tavelure (speckle), avec des techniques de modulation du front d’onde. Cependant, si le laser génère une impulsion brève, le signal transmis s’allonge temporellement, car le milieu diffusant répond différemment pour les diverses composantes spectrales de l’impulsion. Nous avons développé, au cours de cette thèse, des méthodes de contrôle du profil spatiotemporel d’une impulsion brève transmise à travers un milieu diffusant. En mesurant la Matrice de Transmission Multi-Spectrale ou Résolue-Temporellement, la propagation de l’impulsion peut être totalement décrite dans le domaine spectral ou temporel. Avec des techniques de manipulation du front d’onde, les degrés de libertés spectraux/temporel peuvent être ajustés avec un unique SLM via la diversité spectrale du milieu diffusant. Nous avons démontré, de manière déterministe, la focalisation spatio-temporelle d’une impulsion brève après propagation dans un milieu diffusant, avec une compression temporelle proche de la durée initiale de l’impulsion, à différentes positions de l’espace-temps. Nous avons également démontré un façonnage contrôlé du profil temporel de l’impulsion, notamment avec la génération d’impulsions doubles. Nous exploitons cette focalisation spatio-temporelle pour exciter un processus optique non-linéaire, la fluorescence à deux photons. Cette approche ouvre des perspectives intéressantes pour le contrôle cohérent, l’étude de l’interaction lumière-matière ainsi que l’imagerie multi-photonique. / Optical imaging through highly disordered media such as biological tissue or white paint remains a challenge as spatial information gets mixed because of multiple scattering. Nonetheless, spatial light modulators (SLM) offer millions of degrees of freedom to control the spatial speckle pattern at the output of a disordered medium with wavefront shaping techniques. However, if the laser generates a broadband ultrashort pulse, the transmitted signal becomes temporally broadened as the medium responds disparately for the different spectral components of the pulse. We have developed methods to control the spatio-temporal profile of the pulse at the output of a thick scattering medium. By measuring either the Multispectral or the Time- Resolved Transmission Matrix, we can fully describe the propagation of the broadband pulse either in the spectral or temporal domain. With wavefront shaping techniques, one can control both spatial and spectral/temporal degrees of freedom with a single SLM via the spectral diversity of the scattering medium. We have demonstrated deterministic spatio-temporal focusing of an ultrashort pulse of light after the medium, with a temporal compression almost to its initial time-width in different space-time position, as well as different temporal profile such as double pulses. We exploit this spatio-temporal focusing beam to enhance a non-linear process that is two-photon excitation. It opens interesting perspectives in coherent control, light-matter interactions and multiphotonic imaging.

Page generated in 0.0868 seconds