Spelling suggestions: "subject:"full engineering"" "subject:"fue engineering""
11 |
Investigating the combustion mechanisms of bulk meteals through micoranalysis of post-test 3.2mm diameter metallic rods burned in oxygen-enriched atmospheresDe Wit, J. R. Unknown Date (has links)
No description available.
|
12 |
Scramjet experiments using radical farmingOdam, J. Unknown Date (has links)
No description available.
|
13 |
Effects of turbulent flow regimes on pilot and perforated-plate stabilized lean premixed flamesJupyoung Kim (6845579) 14 August 2019 (has links)
An experimental study of the effects of turbulent flow regime on the flame structure is conducted by using perforated-plate-stabilized hydrogen-piloted lean premixed methane/air turbulent flames. The underlying non-reacting turbulent flow field was investigated using two-dimensional three-components particle imaging velocimetry (2D3C-PIV) with and without three perforated plates. The non-reacting flow data allowed a separation of the turbulent flow regime into axial velocity dominated and vortex dominated flows. A plate with 62\% blockage ratio was used to represent the stream-dominant flow regime and another with 86\% blockage ratio was used to represent the vortex-dominant flow regime. OH laser-induced fluorescence was used to study the effects of the turbulent flow regime on the mean progress variable, flame brush thickness, flame surface density, and global consumption speed. In comparison with the stream-dominant flow, the vortex-dominant flow makes a wider and shorter flame. Also, the vortex-dominant flow has a thicker horizontal flame brush thickness and a thinner longitudinal flame brush thickness. Especially, the horizontal flame brush thickness for the vortex-dominant flow does not follow the turbulence diffusion theory. Then, the vortex-dominant flow shows a relatively constant flame surface density along the stream-wise direction, while the stream-dominant flow shows a decreasing flame surface density. Lastly, the vortex-dominant turbulent flow improves the consumption speed in comparison to the stream-dominant turbulent flow regime with the same velocity fluctuation level.
|
14 |
SOURCES OF HEAT REJECTION IN A HDDI DIESEL ENGINE AND METHODS TO IMPROVE THERMAL EFFICIENCYKyle Michael Palmer (6643880) 10 June 2019 (has links)
In the realm of class 8 trucking, fuel economy and emissions compliance are becoming the driving force for development of new heavy-duty direct injected (HDDI) diesel engine technologies. Current production engines in this class convert around 40% of the fuels energy into usable work while the unused potential transfers to the environment as excess heat energy. Current OEMs are working toward decreasing this heat loss and improve engine efficiency and emissions. Quantifying the energy lost by component and system highlights the areas that demand the most attention. By studying test cell data of heat rejection on a production Cummins ISX engine and using the data to calibrate an engine model for the simulation software GT-Suite, heat rejection values and the components which transfer the energy are exposed. The simulation software provides energy transfer by both system and component type. The results reveal that 10% of engine total heat rejection (THR) is transferred through the cylinder wall to the engine coolant system. When the heat imparted on the cylinder wall is broken up by component, the piston rings contribute nearly as much heat into the liner as the combustion gas.
|
15 |
MODELING THE ENVIRONMENTAL AND THERMAL EFFICIENCY COST OF CYLINDER-TO-CYLINDER VARIATIONPhillip Lee Roach (6650363) 10 June 2019 (has links)
Analytical modeling of the root cause of cylinder-to-cylinder variation and the impact on CO2 emission caused by the reduction in engine efficiency <br>
|
16 |
EXPERIMENTAL SETUP AND TESTING OF A VARIABLE VALVE ACTUATION ENABLED CAM-LESS NATURAL GAS ENGINEDoni Manuel Thomas (10487363) 07 December 2022 (has links)
<p> </p>
<p>A Cummins 6.7L natural gas engine enabled with VVA was installed in a research test cell at Purdue’s Ray Herrick Laboratories for experimental testing. The stock engine which was connected to an AC dynameter was mounted on a movable test bed outfitted with numerous sensors, a charge air cooler, and an external heat exchanger. In the engine control room, a few different systems were set up to run the dyno, collect data from the engine sensors, and monitor the safety apparatuses in the test cell. </p>
<p>After the test cell setup was completed, an initial baseline testing was performed to compare the stock engine operation with the baseline engine data given in the Cummins fuel map. The testing was used to verify the engines stock functionality and troubleshoot some additional issues before setting the boundary conditions. Once the boundary conditions were set, a final stock engine testing was performed at rated to check for repeatability and verify stock engine operation following the engine modifications made to accommodate the VVA. </p>
<p>Following the baseline testing, the VVA system was assembled on the standalone rig to verify its operation before mounting it on the engine. In order to run the natural gas valve profiles received from Cummins, the VVA controller gains were retuned and the LVDT sensors were calibrated so that the desired closing, opening and lift behaviors were achieved. After verifying the VVA’s functionality, the hardware was mounted on the engine for the VVA experimental testing. </p>
<p>The initial VVA testing was focused on understanding the impacts of intake valve modulation on the gas exchange process. Based on previous simulation work, reductions in pumping work leading to better fuel economy is one expected outcome. Experimental testing data related to the engine performance and operation was used to compare each IVC case to the stock IVC timing. These results were also compared to the previous GT-Power work to identify any apparent trends.</p>
<p>Future work includes using VVA to further improve efficiency in the part load region, and reduce knock at higher loads. Additionally, the incorporation of a laser based in-cylinder sensing system will help to optimize the capability of VVA.</p>
|
17 |
MID-INFRARED LASER ABSORPTION SPECTROSCOPY DIAGNOSTICS FOR INTERNAL COMBUSTION ENGINE SYSTEMSJoshua W Stiborek (18423714) 23 April 2024 (has links)
<p dir="ltr">This work presents the development and application of novel laser absorption spectroscopy sensors that were deployed to make high-rate (1-15 kHz) measurements of temperature, CO, NO, CO<sub>2</sub>, and air-fuel ratio in internal combustion engine (ICE) systems. These sensors provided measurements with unprecedented time resolution in ICE exhaust that allowed for individual cylinder firing events to be detected which will greatly improve understanding of ICE systems and allow for emissions reduction strategies to be tested. </p>
|
18 |
Polarization Effects of Nitric Oxide Pure Rotational Transitions Demonstrated by Coherent Anti-Stokes Raman ScatteringMichael Thomas Arendt (6664364) 12 August 2019 (has links)
Dual-broadband and dual-pump nanosecond CARS experiments were performed to investigate the pure rotational transitions of the nitric oxide molecule. The former experiment was initially utilized to determine the pure rotational structure while the latter focused on polarization suppression of the pure rotational transitions of nitric oxide. A polarization calculation and analysis were conducted on the rotational and vibrational transitions of nitrogen, and the pure rotational transitions of nitric oxide were subjected to a similar polarization scheme. The electronic transitions that arise due to the spin-split nature of nitric oxide ground electronic energy levels were suppressed by the polarization scheme in a similar manner to the rotational S branch transitions. Results have been compared with a spectral simulation developed by Dr. Lucht, and the theory is partially presented. Comparison between simulation and experimental data yielded favorable agreement for the pure rotational transitions of nitric oxide.
|
19 |
Quenching Distance of Premixed Jet-A/Air MixturesShatakshi Gupta (11023203) 16 May 2024 (has links)
<p>Quenching distance is a fundamental property of hydrocarbon fuel-air mixtures and is a crucial parameter guiding process and equipment design for fire hazard mitigation. Many industrial equipment such as flame arrestors and burners rely on the fundamental principle of flame quenching, i.e., a premixed flame cannot pass through confined spaces below a critical width, given by the Quenching Distance (QD) of the fuel-air mixture. Through the efforts spanning over more than a century, QD is found to depend on various parameters such as temperature, pressure, fuel-air equivalence ratio, and the characteristics of hydrocarbons comprising the fuel. Many investigations on flame quenching behavior have focused on simple fuels such as Hydrogen, Methane, and hydrocarbons upto n-Decane. However, there is a lack of quenching distance data on aviation fuels like Jet-A likely due to the fact that QD property of these fuels is less relevant in practical combustor applications. But in this era of miniaturization, there are several upcoming technologies that will utilize jet fuels or kerosene in confined spaces. For example, a recently proposed Printed Circuit Heat Exchanger (PCHE) is being considered for jet engine performance enhancement by cooling down the compressor discharge air using fuel prior to injection. The cooled air can be used to improve turbine cooling allowing for improvement of the thermal efficiency of the jet engine. However, a major cause of concern during the PCHE operation is the accidental internal fuel leakage from high pressure fuel microchannels into the surrounding air microchannels. Under the severe operating conditions of a jet engine (T >800K, P >10bar), the leaking fuel upon mixing with air pose ignition and sustained combustion risks. This must be evaluated against the competing phenomenon of flame arrestment, since the channel sizes in PCHEs are very small (in the order of a few hundred micrometers). Thus, it becomes imperative to measure the quenching distance of jet fuels to design the microscale passages, predict and mitigate fire hazards to ensure safe operation.</p><p> </p><p>In the present work, the quenching distance of homogeneous, quiescent Jet-A/air mixtures at 473K, 1atm under various equivalence ratios (lean to rich) have been studied. For this purpose, experiments were setup using the ASTM Standard Method that involves using flanged electrodes to measure the parallel-plate QD of quiescent, pre-vaporized fuel-air mixtures under various conditions. Validation tests were carried out with Methanol/air mixtures at 373K, 1atm for different equivalence ratios. For tests with Jet-A/air mixtures, the QD variation with equivalence ratio follows similar trends as that of n-Decane/air. On further analyzing the QD variation with equivalence ratio, we see that the QD minimizes on fuel rich conditions with increasing molecular weight of the fuel which is consistent with the trend shown in literature. The flame propagation behavior shows considerable differences on the lean and the rich sides.</p><p> </p><p>Moreover, the quenching distance of quiescent Methanol/air and Jet-A/air mixtures have been estimated using three different models taken from literature. Model parameters were calculated using Chemkin Pro simulations of the premixed flames at the similar initial conditions as the experiments. On comparing the experiment data with model predictions, we observe that the models agree well with experiment data for Methanol/air mixtures, whereas they fail to capture the QD variation with equivalence ratio for Jet-A/air mixtures. The disagreement may arise because of the high molecular weight of Jet-A that causes the Lewis number to be non-unity unlike Methanol/air mixtures. Therefore, an empirical power law relation has been developed for estimating the QD of hydrocarbon/air mixtures to the incorporate the Lewis number effect. The model agrees well with Jet-A/air QD data from experiments over the entire equivalence ratios. This will help to further our understanding of the complex fuel combustion and flame quenching for better risk mitigation.</p>
|
20 |
Fine particle emissions and slag formation in fixed-bed biomass combustion : aspects of fuel engineeringFagerström, Jonathan January 2015 (has links)
There is a consensus worldwide that the share of renewable energy sources should be increased to mitigate climate change. The strive to increase the renewable energy fraction can partly be met by an increased utilization of different biomass feedstocks. Many of the "new" feedstocks puts stress on certain challenges such as air pollution emissions and operation stability of the combustion process. The overall objective was to investigate, evaluate, and explain the effects of fuel design and combustion control - fuel engineering - as primary measures for control of slag formation, deposit formation, and fine particle emissions during biomass combustion in small and medium scale fixed-bed appliances. The work in this thesis can be outlined as having two main focus areas, one more applied regarding fuel engineering measures and one more fundamental regarding the time-resolved release of ash forming elements, with particular focus on potassium. The overall conclusion related to the abatement of particle emissions and slag formation, is that the release of fine particle and deposit forming matter can be controlled simultaneously as the slag formation during fixed-bed biomass combustion. The methodology is in this perspective denoted “fuel engineering” and is based on a combined approach including both fuel design and process control measures. The studies on time-resolved potassium release showed that a Macro-TG reactor with single pellet experiments was a valuable tool for studying ash transformation along the fuel conversion. The combination of dedicated release determinations based on accurate mass balance considerations and ICP analysis, with phase composition characterization by XRD, is important for the understanding of potassium release in general and time-resolved data in particular. For wood, the results presented in this work supports the potassium release mechanism from "char-K" but questions the previously suggested release mechanism from decomposition of K-carbonates. For straw, the present data support the idea that the major part of the potassium release is attributed to volatilization of KCl. To further explore the detailed mechanisms, the novel approach developed and applied in this work should be complemented with other experimental and analytical techniques. The research in this thesis has explored some of the challenges related to the combined phenomena of fuel conversion and ash transformation during thermochemical conversion of biomass, and has contributed with novel methods and approaches that have gained new knowledge to be used for the development of more effective bioenergy systems.
|
Page generated in 0.0948 seconds