111 |
Approche nouvelle pour l'enseignement de la géométrie en quatrième année du cours élémentaireGirard, Jeanne-d'Arc 25 April 2018 (has links)
Québec Université Laval, Bibliothèque 2014
|
112 |
Compréhension de la démonstration en géométrie chez les professeurs et les élèves au secondaireBraconne-Michoux, Annette 25 April 2018 (has links)
Québec Université Laval, Bibliothèque 2016
|
113 |
De la structure croissante des réseaux complexes : approche de la géométrie des réseauxMurphy, Charles 12 April 2024 (has links)
L’internet, le cerveau humain et bien d’autres sont des systèmes complexes ayant un grand nombre d’éléments qui interagissent fortement entre eux selon leur structure. La science des réseaux complexes, qui associe ces éléments et interactions respectivement à des noeuds et liens d’un graphe, permet aujourd’hui de mieux les comprendre grâce aux types d’analyses quantitatives qu’elle rend possible. D’une part, elle permet de définir une variété de propriétés structurelles menant vers une classification de ces systèmes. D’autre part, la compréhension de l’émergence de ces propriétés grâce à certains modèles stochastiques de réseaux devient réalité. Dans les dernières années, un effort important a été déployé pour identifier des mécanismes d’évolution universels pouvant expliquer la structure des réseaux complexes réels. Ce mémoire est consacré à l’élaboration d’un de ces mécanismes de croissance universels basé sur la théorie de la géométrie des réseaux complexes qui stipule que les réseaux sont des objets abstraits plongés dans des espaces métriques de similarité où la distance entre les noeuds affecte l’existence des liens. Au moyen de méthodes d’analyse avancées, la caractérisation complète de ce mécanisme a été établie et permet le contrôle de plusieurs propriétés structurelles des réseaux ainsi générés. Ce mécanisme général pourrait expliquer, du moins de manière effective, la structure d’un nombre important de systèmes complexes dont la formation est, encore aujourd’hui, mal comprise. / The internet and the human brain among others are complex systems composed of a large number of elements strongly interacting according to their specific structure. Nowadays, network science, which construes these elements and interactions respectively as nodes and links of a graph, allows a better understanding of these systems thanks to the quantitative analysis it oers. On the one hand, network science provides the definition of a variety of structural properties permitting their classification. On the other hand, it renders possible the investigation of the emergence of these properties via stochastic network models. In recent years, considerable efforts have been deployed to identify universal evolution mechanisms responsible for the structure of real complex networks. This memoir is dedicated to one of these universal growth mechanisms based on the network geometry theory which prescribes that real networks are abstract objects embedded in similarity metric spaces where the distance between nodes aect the existence of the links. Thanks to advanced analysis methods, the complete characterization of the mechanism has been achieved and allows the control of structural properties over a wide range. This general mechanism could explain, at least effectively, the structure of a number of complex systems for which the evolution is still poorly understood.
|
114 |
Critères de capacité nulleSelezneff, Alexis 18 April 2018 (has links)
Savoir si un ensemble est de capacité nulle ou connaître sa dimension capacitaire est une question importante. De nombreux articles (tels que [3], [5], [6]) ont élucidé la question dans le cas de certains ensembles de Cantor. Les K-sets sont des ensembles de R. En particulier, les ensembles de Cantor les plus réguliers, pour lesquels on connaît une condition simple de capacité nulle, sont des K-sets. Ce mémoire a pour but de montrer l'efficacité d'une méthode dans le cadre des ensembles de Cantor et ses limites dans le cadre des K-sets. Il est principalement inspiré de l'article [8].
|
115 |
Excisions tubulaires et valeurs propres de Steklov de boules géodésiquesBrisson, Jade 23 October 2023 (has links)
Titre de l'écran-titre (visionné le 2 octobre 2023) / Dans cette thèse, le problème de Steklov est étudié. Tout d'abord, ce problème est étudié sur des variétés riemanniennes fermées soumises à des excisions tubulaires. Étant données $\varepsilon > 0$, une variété riemannienne fermée $M$ de dimension $m \geq 2$ et une sous-variété fermée $N \subset M$ de dimension $0 \leq n \leq m - 2$, une excision tubulaire consiste à enlever le voisinage tubulaire $N^{\varepsilon} := \{ p \in M : d_{g}(p, N) \leq \varepsilon \}$ de taille $\varepsilon$ autour de $N$ afin d'obtenir le domaine $\Omega_{\varepsilon} := M \setminus N^{\varepsilon}$. Le résultat principal de cette thèse concerne le comportement des valeurs propres de Steklov d'une variété riemannienne fermée $M$ soumise à un nombre fini $b \geq 1$ d'excisions tubulaires. Plus précisément, il est montré que les valeurs propres divergent lorsque la taille des voisinages tubulaires tend vers $0$. Cette construction donne un nouvel exemple de variétés ayant une grande première valeur propre et permet d'étudier des problèmes de type isopérimétrique, comme étudier la pertinence de certaines quantités géométriques présentes dans des bornes supérieures connues. On utilise la quasi-isométrie et la comparaison des valeurs propres de Steklov à des valeurs propres de problèmes mixtes -- le problème de Steklov-Neumann et le problème de Steklov-Dirichlet. La séparation de variables est ensuite utilisée pour calculer les valeurs propres de ces problèmes mixtes. Grâce à cette méthode, on obtient l'ordre et le taux de divergence des valeurs propres ordonnées d'indice supérieur à $b$. Finalement, les fonctions propres et les valeurs propres de Steklov pour des boules géodésiques des sphères et des espcaes hyperboliques sont calculées. Elles sont trouvées à l'aide de la méthode de séparation de variables. / In this thesis, the Steklov problem is studied. This problem is first studied on closed Riemannian manifolds subject to tubular excisions. Given $\varepsilon > 0$, a closed Riemannian manifold $M$ of dimension $m \geq 2$ and a closed submanifold $N \subset M$ of dimension $0 \leq n \leq m - 2$, a tubular excision consists of removing the tubular neighbourhood $N^{\varepsilon} := \{ p \in M : d_{g}(p, N) \leq \varepsilon \}$ of size $\varepsilon$ around $N$ to obtain the domain $\Omega_{\varepsilon} := M \setminus N^{\varepsilon}$. The principal result of this thesis concerns the behaviour of the Stekov eigenvalues of a closed Riemannian manifold $M$ subject to a finite number $b \geq 1$ of tubular excisions. More precisely, it is proven that the eigenvalues diverge to infinity when the size of the tubular neighbourhood tends to $0$. This construction gives a new example of manifolds with a large first eigenvalue and allows to study isoperimetric type problems, as well as study the importance of certain geometric quantities present in known upper bounds. We use quasi-isometry and the bracketing of Steklov eigenvalues which compares the Steklov eigenvalues with eigenvalues of mixed problems -- the Steklov-Neumann and the Steklov-Dirichlet problems. Then, the eigenvalues of those mixed problems are computed via the method of separation of variables. This method gives us the order and the rate of divergence of the ordered eigenvalues of index superior to "b". In a second part, the eigenfunctions and eigenvalues of geodesic balls in spheres and hyperbolic spaces are computed via the method of separation of variables.
|
116 |
Le théorème spectral pour le problème de Steklov sur un domaine euclidienLabrie, Marc-Antoine 19 June 2024 (has links)
Le problème de Steklov est un problème spectral dont l'origine se situe en mécanique des fluides (oscillations de faibles amplitudes). En géométrie spectrale, on s'intéresse aux liens entre les fréquences de vibrations propres d'un espace et la géométrie de celui-ci. L'objet de ce mémoire consiste à donner une preuve succincte et accessible du théorème spectral pour le problème de Steklov qui stipule, entre autres, que le spectre de ce problème est discret. En effet, ce théorème est très important puisqu'il est le point de départ de toute étude du problème de Steklov en géométrie spectrale. Néanmoins, la preuve n'est pas facilement accessible dans la littérature et demande un travail bibliographique considérable.
|
117 |
Une contribution au sujet de "la méthode axiomatique dans l'enseignement de la géométrie"Lunkenbein, D. 25 April 2018 (has links)
Québec Université Laval, Bibliothèque 2014
|
118 |
Problèmes isopérimétriques et isospectralité pour le problème de SteklovBrisson, Jade 28 March 2024 (has links)
En géométrie spectrale, on s’intéresse aux liens entre le spectre d’une variété riemannienne et sa géométrie. On recherche notamment des bornes supérieures et inférieures pour les va-leurs propres qui font intervenir des quantités géométriques, comme l’aire et le périmètre. On se questionne aussi sur l’isospectralité : Quelles sont les variétés riemanniennes non iso-métriques qui possèdent le même spectre ? Au cours des dernières années, le problème de Steklov, problème introduit au tout début du 20e siècle en mécanique des fluides, a suscité l’intérêt de plusieurs mathématiciens. Le but de ce mémoire est de donner une banque de variétés riemanniennes Steklov-isospectrales. On y présente aussi une preuve d’une borne supérieure pour la première valeur propre de Steklov pour un domaine borné du plan, sans hypothèse sur sa connexité. / In spectral geometry, we are interested in the links between the spectrum of a Riemannian manifold and its geometry. We are looking for geometric upper and lower bounds for the eigenvalues. These bounds are geometric, for they involve geometric quantities such as area and perimeter. Isospectrality is also a subject of interest in spectral geometry: What are thenon isometric Riemannian manifolds that share the same spectrum? In the last few years, the Steklov problem, introduced in the beginning of the 20th century in fluid mechanics, raised the interest of many mathematicians. In this memoir, we present a bank of Steklov-isospectral Riemannian manifolds. We also give a proof of an upper bound for the first Steklov eigenvalue for a bounded domain of the plane without any connectedness assumption.
|
119 |
Lower bounds for the Steklov eigenvalue problemDavoudi, Salman 28 March 2024 (has links)
Le problème de Steklov est un problème spectral qui provient de la mécanique des fluides. C’est un problème de valeur propre dont les paramètres spectraux sont dans la condition au bord. Son spectre coïncide avec celui de l’opérateur de Dirichlet-Neumann. Le spectre du problème de Steklov est discret lorsque l’opérateur de trace est compact, ce qui est le cas lorsque la frontière du domaine est lipschitzienne. Dans ce mémoire, nous prouvons de deux manières différentes l’effondrement vers 0 du spectre de Steklov pour un domaine en forme d’haltère dégénérant vers deux disques. On se concentre par la suite sur les domaines dont la frontière n’est pas uniformément lipschitzienne. Nous donnons deux exemples pour montrer que l’opérateur de trace n’est pas compact pour ces domaines. De plus, nous présentons une borne inférieure pour la première valeur propre σ₁ non nulle du problème de Steklov pour les domaines ayant deux axes de symétrie. Enfin, nous présentons des bornes inférieures pour le problème des valeurs propres Steklov pour les domaines étoilés. Ces résultats sont dus à J. R. Kuttler et V. G. Sigillito. [7, 8]. / The Steklov problem is a spectral problem whose origin lies in the mechanics of fluids. It is an eigenvalue problem with spectral parameters in the boundary conditions, which has various applications. Its spectrum coincides with that of the Dirichlet-to-Neumann operator. The spectrum of the Steklov’s problem is discrete when the trace operator is compact. In this master’s thesis, we prove the collapse of the Steklov spectrum for a dumbbell domain in two manners. We will focus on non-Lipschitz domains. We give two examples to show that the trace operator is not compact for non-Lipschitz domains. Furthermore, we present a lower bound to the first non-zero eigenvalue σ₁ of the Steklov problem for domains having two axes of symmetry. Finally, we present lower bounds for the Steklov eigenvalue problem for starshaped domains. These results were due to J. R. Kuttler and V. G. Sigillito restrict domains to domains with two axes of symmetry or star-shaped domains [7, 8].
|
120 |
Élaboration de métriques basées sur la géométrie pour la planification de traitements en radiothérapie par modulation d’intensité à l’aide de l’analyse de frontières stochastiquesGagné, Marie-Chantal 23 April 2018 (has links)
La radiothérapie par modulation d’intensité est une technique avancée de traitement du cancer qui utilise de nombreux faisceaux de photons dont les intensités sont modulées. Avec cette méthode, des compromis entre la couverture de la zone à traiter et la sauvegarde des organes à risque sont nécessaires et dépendent du planificateur. Pour accélérer, uniformiser et accroître la qualité des planifications futures, le présent mémoire propose des métriques basées sur la géométrie spécifique des patients. Pour ce faire, une étude rétrospective a été conduite. Certains indices dosimétriques d’intérêt ont été mis en relation avec des paramètres géométriques simples. Un modèle de frontières stochastiques a été adapté pour déterminer les frontières inférieures des distributions par une méthode de maximisation de la vraisemblance. La validité de la méthode a été testée. L’impact de l’implantation en clinique d’une métrique simple en ORL a finalement été évalué.
|
Page generated in 0.045 seconds