• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 10
  • 10
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magellan/M2FS Spectroscopy of Galaxy Clusters: Stellar Population Model and Application to Abell 267

Tucker, Evan, Walker, Matthew G., Mateo, Mario, Olszewski, Edward W., Bailey, John I., Crane, Jeffrey D., Shectman, Stephen A. 29 August 2017 (has links)
We report the results of a pilot program to use the Magellan/M2FS spectrograph to survey the galactic populations and internal kinematics of galaxy clusters. For this initial study, we present spectroscopic measurements for 223 quiescent galaxies observed along the line of sight of the galaxy cluster Abell 267 (z similar to 0.23). We develop a Bayesian method for modeling the integrated light from each galaxy as a simple stellar population, with free parameters that specify the redshift (v(los)/c) and characteristic age, metallicity ([Fe/H]), alpha-abundance ([alpha/Fe]), and internal velocity dispersion (sigma(int)) for individual galaxies. Parameter estimates derived from our 1.5 hr observation of A267 have median random errors of sigma(vlos) = 20 km s(-1), sigma(Age) = 1.2 Gyr, sigma([Fe/H]) = 0.11 dex, sigma([alpha/Fe]) = 0.07 dex, and sigma(sigma int) = 20 km s(-1). In a companion paper, we use these results to model the structure and internal kinematics of A267.
2

Galaxy Populations in Massive Galaxy Clusters to z = 1.1: Color Distribution, Concentration, Halo Occupation Number and Red Sequence Fraction

Hennig, C., Mohr, J. J., Zenteno, A., Desai, S., Dietrich, J. P., Bocquet, S., Strazzullo, V., Saro, A., Abbott, T. M. C., Abdalla, F. B., Bayliss, M., Benoit-Lévy, A., Bernstein, R. A., Bertin, E., Brooks, D., Capasso, R., Capozzi, D., Carnero, A., Kind, M. Carrasco, Carretero, J., Chiu, I., D’Andrea, C. B., daCosta, L. N., Diehl, H. T., Doel, P., Eifler, T. F., Evrard, A. E., Fausti-Neto, A., Fosalba, P., Frieman, J., Gangkofner, C., Gonzalez, A., Gruen, D., Gruendl, R. A., Gupta, N., Gutierrez, G., Honscheid, K., Hlavacek-Larrondo, J., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Martini, P., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Neilsen, E., Nord, B., Ogando, R., Plazas, A. A., Reichardt, C., Romer, A. K., Rozo, E., Rykoff, E. S., Sanchez, E., Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Stalder, B., Stanford, S.A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vikram, V., Walker, A. R., Zhang, Y. 23 January 2017 (has links)
We study the galaxy populations in 74 Sunyaev-Zeldovich effect selected clusters from the South Pole Telescope survey, which have been imaged in the science verification phase of the Dark Energy Survey. The sample extends up to z similar to 1.1 with 4 x 10(14)M(circle dot) <= M-200 <= 3 x 10(15)M(circle dot). Using the band containing the 4000 angstrom break and its redward neighbour, we study the colour-magnitude distributions of cluster galaxies to similar to m(*) + 2, finding that: (1) The intrinsic rest frame g - r colour width of the red sequence (RS) population is similar to 0.03 out to z similar to 0.85 with a preference for an increase to similar to 0.07 at z = 1, and (2) the prominence of the RS declines beyond z similar to 0.6. The spatial distribution of cluster galaxies is well described by the NFW profile out to 4R(200) with a concentration of c(g) = 3.59(-0.18)(+0.20), 5.37(-0.24)(+0.27) and 1.38(-0.19)(+0.21) for the full, the RS and the blue non-RS populations, respectively, but with similar to 40 per cent to 55 per cent cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region N-200 exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The RS fraction within R-200 is (68 +/- 3) per cent at z = 0.46, varies from similar to 55 per cent at z = 1 to similar to 80 per cent at z = 0.1 and exhibits intrinsic variation among
3

Mapping the kinetic Sunyaev-Zel’dovich effect toward MACS J0717.5+3745 with NIKA

Adam, R., Bartalucci, I., Pratt, G. W., Ade, P., André, P., Arnaud, M., Beelen, A., Benoît, A., Bideaud, A., Billot, N., Bourdin, H., Bourrion, O., Calvo, M., Catalano, A., Coiffard, G., Comis, B., D’Addabbo, A., De Petris, M., Démoclès, J., Désert, F.-X., Doyle, S., Egami, E., Ferrari, C., Goupy, J., Kramer, C., Lagache, G., Leclercq, S., Macías-Pérez, J.-F., Maurogordato, S., Mauskopf, P., Mayet, F., Monfardini, A., Mroczkowski, T., Pajot, F., Pascale, E., Perotto, L., Pisano, G., Pointecouteau, E., Ponthieu, N., Revéret, V., Ritacco, A., Rodriguez, L., Romero, C., Ruppin, F., Schuster, K., Sievers, A., Triqueneaux, S., Tucker, C., Zemcov, M., Zylka, R. 09 February 2017 (has links)
Measurement of the gas velocity distribution in galaxy clusters provides insight into the physics of mergers, through which large scale structures form in the Universe. Velocity estimates within the intracluster medium (ICM) can be obtained via the Sunyaev-Zel'dovich (SZ) effect, but its observation is challenging both in term of sensitivity requirement and control of systematic effects, including the removal of contaminants. In this paper we report resolved observations, at 150 and 260 GHz, of the SZ effect toward the triple merger MACS J0717.5 + 3745 (z = 0.55), using data obtained with the NIKA camera at the IRAM 30 m telescope. Assuming that the SZ signal is the sum of a thermal (tSZ) and a kinetic (kSZ) component and by combining the two NIKA bands, we extract for the first time a resolved map of the kSZ signal in a cluster. The kSZ signal is dominated by a dipolar structure that peaks at -5.1 and + 3.4 sigma, corresponding to two subclusters moving respectively away and toward us and coincident with the cold dense X-ray core and a hot region undergoing a major merging event. We model the gas electron density and line-of-sight velocity of MACS J0717.5 + 3745 as four subclusters. Combining NIKA data with X-ray observations from XMM-Newton and Chandra, we fit this model to constrain the gas line-of-sight velocity of each component, and we also derive, for the first time, a velocity map from kSZ data (i. e. that is model-dependent). Our results are consistent with previous constraints on the merger velocities, and thanks to the high angular resolution of our data, we are able to resolve the structure of the gas velocity. Finally, we investigate possible contamination and systematic effects with a special care given to radio and submillimeter galaxies. Among the sources that we detect with NIKA, we find one which is likely to be a high redshift lensed submillimeter galaxy.
4

CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH ∼800 SPECTRA OF MEMBER GALAXIES

Balestra, I., Mercurio, A., Sartoris, B., Girardi, M., Grillo, C., Nonino, M., Rosati, P., Biviano, A., Ettori, S., Forman, W., Jones, C., Koekemoer, A., Medezinski, E., Merten, J., Ogrean, G. A., Tozzi, P., Umetsu, K., Vanzella, E., Weeren, R. J. van, Zitrin, A., Annunziatella, M., Caminha, G. B., Broadhurst, T., Coe, D., Donahue, M., Fritz, A., Frye, B., Kelson, D., Lombardi, M., Maier, C., Meneghetti, M., Monna, A., Postman, M., Scodeggio, M., Seitz, S., Ziegler, B. 08 June 2016 (has links)
We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS. J0416.1-2403 (z = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over similar to 600 arcmin(2), including similar to 800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to similar to 2.2 r(200) (similar to 4Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster (M-200 similar to 0.9 x 10(15) M-circle dot and sigma(V r200) similar to 1000 km s(-1)) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by Delta V-rf similar to 1100 km s(-1) with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE-SW direction, with a prominent sub-clump similar to 600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z similar to 0.390, similar to 10' south of the cluster center, projected at similar to 3Mpc, with a relative line-of-sight velocity of Delta V-rf similar to 1700 km s(-1). The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the "universal" NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we also release the entire redshift catalog of 4386 sources in the field of this cluster, which includes 60 identified Chandra X-ray sources and 105 JVLA radio sources.
5

The extraordinary amount of substructure in the Hubble Frontier Fields cluster Abell 2744

Jauzac, M., Eckert, D., Schwinn, J., Harvey, D., Baugh, C. M., Robertson, A., Bose, S., Massey, R., Owers, M., Ebeling, H., Shan, H. Y., Jullo, E., Kneib, J.-P., Richard, J., Atek, H., Clément, B., Egami, E., Israel, H., Knowles, K., Limousin, M., Natarajan, P., Rexroth, M., Taylor, P., Tchernin, C. 21 December 2016 (has links)
We present a joint optical/X-ray analysis of the massive galaxy cluster Abell 2744 (z = 0.308). Our strong- and weak-lensing analysis within the central region of the cluster, i.e. at R < 1 Mpc from the brightest cluster galaxy, reveals eight substructures, including the main core. All of these dark matter haloes are detected with a significance of at least 5 sigma and feature masses ranging from 0.5 to 1.4 x 10(14) M-circle dot within R < 150 kpc. Merten et al. and Medezinski et al. substructures are also detected by us. We measure a slightly higher mass for the main core component than reported previously and attribute the discrepancy to the inclusion of our tightly constrained strong-lensing mass model built on Hubble Frontier Fields data. X-ray data obtained by XMM-Newton reveal four remnant cores, one of them a new detection, and three shocks. Unlike Merten et al., we find all cores to have both dark and luminous counterparts. A comparison with clusters of similar mass in the Millennium XXL simulations yields no objects with as many massive substructures as observed in Abell 2744, confirming that Abell 2744 is an extreme system. We stress that these properties still do not constitute a challenge to Lambda cold dark matter, as caveats apply to both the simulation and the observations: for instance, the projected mass measurements from gravitational lensing and the limited resolution of the subhaloes finders. We discuss implications of Abell 2744 for the plausibility of different dark matter candidates and, finally, measure a new upper limit on the self-interaction cross-section of dark matter of sigma(DM) < 1.28 cm(2) g(-1) (68 per cent CL), in good agreement with previous results from Harvey et al.
6

The Ages of Passive Galaxies in a z = 1.62 Protocluster

Lee-Brown, Donald B., Rudnick, Gregory H., Momcheva, Ivelina G., Papovich, Casey, Lotz, Jennifer M., Tran, Kim-Vy H., Henke, Brittany, Willmer, Christopher N. A., Brammer, Gabriel B., Brodwin, Mark, Dunlop, James, Farrah, Duncan 20 July 2017 (has links)
We present a study of the relation between galaxy stellar age and mass for 14 members of the z = 1.62 protocluster IRC 0218, using multiband imaging and HST G102 and G141 grism spectroscopy. Using UVJ colors to separate galaxies into star-forming and quiescent populations, we find that, at stellar masses M*>= 10(10.85)M circle dot the quiescent fraction in the protocluster is f(Q) = 1.0(-0.37)(+0.00), consistent with a similar to 2x enhancement relative to the field value, f(Q) = 0.45(-0.03)(+0.03). At masses 10(10.2)M circle dot <= M* <= 10(10.85)M circle dot, f(Q) in the cluster is f(Q) = 0.40(-0.18)(+0.20), consistent with the field value of f(Q) = 0.28(-0.02)(+0.02). Using galaxy D-n(4000) values derived from the G102 spectroscopy, we find no relation between galaxy stellar age and mass. These results may reflect the impact of merger- driven mass redistribution-which is plausible, as this cluster is known to host many dry mergers. Alternately, they may imply that the trend in f(Q) in IRC 0218 was imprinted over a short timescale in the protocluster's assembly history. Comparing our results with those of other high- redshift studies and studies of clusters at z similar to 1, we determine that our observed relation between f(Q) and stellar mass only mildly evolves between z similar to 1.6 and z similar to 1, and only at stellar masses M* <= 10(10.85) M circle dot Both the z similar to 1 and z similar to 1.6 results are in agreement that the red sequence in dense environments was already populated at high redshift, z greater than or similar to 3, placing constraints on the mechanism(s) responsible for quenching in dense environments at z >= 1.5.
7

Joint Strong and Weak Lensing Analysis of the Massive Cluster Field J0850+3604

Wong, Kenneth C., Raney, Catie, Keeton, Charles R., Umetsu, Keiichi, Zabludoff, Ann I., Ammons, S. Mark, French, K. Decker 31 July 2017 (has links)
We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which contains the massive cluster Zwicky 1953. This field was selected for its high projected concentration of luminous red galaxies. Using Subaru/Suprime-Cam BVR(c)I(c)i'z' imaging and MMT/Hectospec spectroscopy, we first perform a weak lensing shear analysis to constrain the mass distribution in this field, including the cluster at z = 0.3774 and a smaller foreground halo at z = 0.2713. We then add a strong lensing constraint from a multiply imaged galaxy in the imaging data with a photometric redshift of z approximate to 5.03. Unlike previous cluster-scale lens analyses, our technique accounts for the full three-dimensional mass structure in the beam, including galaxies along the line of sight. In contrast with past cluster analyses that used only lensed image positions as constraints, we use the full surface brightness distribution of the images. This method predicts that the source galaxy crosses a lensing caustic, such that one image is a highly magnified "fold arc" that could be used to probe the source galaxy's structure at ultra-high spatial resolution (< 30 pc). We calculate the mass of the primary cluster to be M-vir = 2.93(-0.65)(+0.71) x 10(15) M-circle dot. with a concentration of C-vir = 3.46(-0.59)(+0.70), consistent with the mass-concentration relation of massive clusters at a similar redshift. The large mass of this cluster makes J0850 an excellent field for leveraging lensing magnification to search for high-redshift galaxies, competitive with and complementary to that of well-studied clusters such as the HST Frontier Fields.
8

SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

Kelly, P. L., Brammer, G., Selsing, J., Foley, R. J., Hjorth, J., Rodney, S. A., Christensen, L., Strolger, L.-G., Filippenko, A. V., Treu, T., Steidel, C. C., Strom, A., Riess, A. G., Zitrin, A., Schmidt, K. B., Bradac, M., Jha, S. W., Graham, M. L., McCully, C., Graur, O., Weiner, B. J., Silverman, J. M., Taddia, F. 09 November 2016 (has links)
We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN. 1987A-like SNe, and we find strong evidence for a broad H alpha P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe. IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H alpha and Na I D absorption. From the grism spectrum, we measure an H alpha expansion velocity consistent with those of SN. 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H alpha emission of the WFC3 and X-shooter spectra, separated by similar to 2.5 months in the rest frame, provide additional evidence that supports the SN. 1987A-like classification. In comparison with other examples of SN. 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 +/- 0.1 dex and <8.4 dex, respectively) near the explosion site.
9

M 87 at metre wavelengths: the LOFAR picture

Smirnov, O, De Gasperin, F, Orrú, E, Murgia, M, Merloni, A, Falcke, H, Beck, R, Beswick, R, Bîrzan, L, Bonafede, A, Brüggen, M January 2012 (has links)
Context.M 87 is a giant elliptical galaxy located in the centre of the Virgo cluster, which harbours a supermassive black hole of mass 6.4 × 109 M⊙, whose activity is responsible for the extended (80 kpc) radio lobes that surround the galaxy. The energy generated by matter falling onto the central black hole is ejected and transferred to the intra-cluster medium via a relativistic jet and morphologically complex systems of buoyant bubbles, which rise towards the edges of the extended halo. Aims. To place constraints on past activity cycles of the active nucleus, images of M 87 were produced at low radio frequencies never explored before at these high spatial resolution and dynamic range. To disentangle different synchrotron models and place constraints on source magnetic field, age and energetics, we also performed a detailed spectral analysis of M 87 extended radio-halo. Methods. We present the first observations made with the new Low-Frequency Array (LOFAR) of M 87 at frequencies down to 20 MHz. Three observations were conducted, at 15−30 MHz, 30−77 MHz and 116−162 MHz. We used these observations together with archival data to produce a low-frequency spectral index map and to perform a spectral analysis in the wide frequency range 30 MHz–10 GHz. Results. We do not find any sign of new extended emissions; on the contrary the source appears well confined by the high pressure of the intra-cluster medium. A continuous injection of relativistic electrons is the model that best fits our data, and provides a scenario in which the lobes are still supplied by fresh relativistic particles from the active galactic nuclei. We suggest that the discrepancy between the low-frequency radio-spectral slope in the core and in the halo implies a strong adiabatic expansion of the plasma as soon as it leaves the core area. The extended halo has an equipartition magnetic field strength of ≃10 μG, which increases to ≃13 μG in the zones where the particle flows are more active. The continuous injection model for synchrotron ageing provides an age for the halo of ≃40 Myr, which in turn provides a jet kinetic power of 6−10 × 1044 erg s-1.
10

Galaxy populations in distant, X-ray selected clusters of galaxies

Trudeau, Ariane 19 August 2022 (has links)
Galaxy clusters are the largest gravitationally bound structures in the Universe. Their masses are dominated by dark matter ($\sim$85\% of the mass) with stars representing 1-4\% of their masses. A hot, X-ray emitting gas called the intracluster medium makes most of their baryonic mass. The presence of this gas and of numerous neighbouring galaxies prematurely stop the star formation in clusters. In other terms, more galaxies in clusters are passive than in the general population of galaxies. This effect is mass and position-dependant: high-mass galaxies are more likely to be passive than less massive ones; galaxies inhabiting the cluster core are also less likely to form stars than those in the outskirts. The fraction of passive galaxies is greater in local clusters than in high-redshift ones, because they had more time to evolve. Much is unknown about the cessation of star formation, called quenching, in clusters. Thus, although many examples of infalling galaxies being stripped of their gas have been reported for low-mass galaxies, it is unclear if the most massive members became quenched before or after they become cluster members. The relationship between quenching and the cluster mass is also poorly understood. Despite the variety of methods devised to find clusters of galaxies, most of what we know about quenching in $z\gtrsim 1$ clusters was discovered with optically/infrared-selected cluster samples (clusters found as overdensities of galaxies), or samples of mixed origin. Yet, there is tentative evidence that optically/infrared-selected samples are biased toward having more passive galaxies than those that were X-ray selected. In the present dissertation, quenching is explored in X-ray selected cluster samples. A sample of high-redshift, low-mass galaxy clusters is built by finding galaxy overdensities coincident with sources of extended X-ray emission. A photometry-based analysis reveals that the fraction of quenched galaxies in these clusters is very variable. Moreover, the brightest cluster galaxies are also diverse. Yet, for all the information that photometry can provide, this sample candidate clusters need to be confirmed with spectroscopy. Spectroscopic observations obtained for four candidate clusters are reduced and analysed. The results show that three of them are clusters, the fourth candidate being a superposition of structures. Member spectra are examined to infer their star formation history, and the results shows the existence of an intermediary population of galaxies, where an old stellar population coexists with weak star formation. Finally, the galaxies of a $z=1.98$ X-ray selected cluster, XLSSC 122 are investigated in detail. Photometric data in 12 bands are organized to perform spectral energy distribution fittings, a technique that allows a simplified reconstitution of the history of the star formation. Results show that the members were formed at diverse epochs, the oldest being about 2.5 Gyrs old. Simulations drawn from the Multi Dark Planck 2 are used to infer the mass-scale of the cluster when the oldest galaxies were formed, something that has never been done before. The oldest galaxies were probably formed when XLSSC 122 had accreted $<$10\% of its $z=1.98$ mass, i.e. the mass-scale of a galaxy group. / Graduate

Page generated in 0.0395 seconds