• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimisation de la formation des pilotes par l’éducation du comportement oculaire / Optimization of pilot training through gaze behaviour education

Dubois, Emilien 17 November 2017 (has links)
Cette thèse s’intéresse à la manière d’optimiser l’apprentissage du pilotage par l’amélioration de l’éducation du comportement oculaire. Dans divers domaines (e.g., médical, aéronautique), différentes méthodes d’éducation du comportement oculaire ont démontré leur efficacité quant à leur capacité à optimiser le temps d’apprentissage d’une tâche. Toutefois, dans le domaine du pilotage, cela n’a reçu que très peu de validation empirique (Ziv, 2016) notamment à cause de difficultés de mise en œuvre technique et méthodologique inhérentes à la nature dynamique et complexe de l’activité de pilotage (Eyrolle et al., 1996). Dans le but d’éduquer le comportement oculaire des élèves-pilotes, nous avons tout d’abord modélisé les caractéristiques du comportement oculaire à adopter. Puis nous avons conçu, développé et validé expérimentalement un outil spécifique, le PilotGazeTrainer, permettant de mettre en œuvre une nouvelle méthode originale d’éducation du comportement oculaire basée sur deux principes essentiels : l’analyse permanente du regard du participant, et l’affichage en temps-réel de feedbacks visuels ou sonores. Afin d’évaluer cette nouvelle méthode, nous avons réalisé plusieurs expérimentations sur un simulateur de vol et sur un micromonde développé pour l’occasion (l’AbstractFlyingTask). Les premiers résultats montrent que notre méthode permet, en très peu de temps, une modification durable du comportement oculaire bénéfique pour les personnes concernées. Ces résultats comportementaux ont également révélé le potentiel des outils développés – le micromonde AbstractFlyingTask et le PilotGazeTrainer – pour éduquer le comportement oculaire. / This thesis focuses on how to optimize the learning of piloting by improving the ocular behavior educationIn several fields (e.g., medical, aeronautics), various methods of ocular behavior educating have demonstrated their effectiveness in their ability to optimize the learning of a task. However, the education of ocular behavior has received few empirical validations in the field of piloting training (Ziv, 2016) especially because of difficulties in the technical and methodological implementation (e.g., real-time analysis of the gaze location) inherent in the dynamic and complex nature of the piloting situation (Eyrolle, Mariné & Mailles, 1996). In order to educate the ocular behavior of the pilot students, we first modeled the characteristics of the ocular behavior to be adopted. Then we designed, developed and validated experimentally a first specific tool, the PilotGazeTrainer (a software), which allows the implementation of a new and original method of ocular behavior education based on two essential principles: the permanent analysis of the participant's ocular behavior, and the production in real-time of visual or sound feedbacks. In order to evaluate this new method, we conducted several experiments on a flight simulator and on a microworld developed for the purposes of this evaluation (the AbstractFlyingTask). The first results show that our method allows a lasting modification of the ocular behavior in a very short intervention time. These behavioral results also revealed the potential of the developed tools - the AbstractFlyingTask microworld and the PilotGazeTrainer - to educate ocular behavior.
12

Robot Gaze Behaviour for Handling Confrontational Scenarios / Blickbeteendet hos en robot för att hantera konfrontationsscenarier

Gorgis, Paul January 2021 (has links)
In everyday communication, humans utilise eye gaze due to its importance as a communication tool. As technology evolves, social robots are expected to become more adopted in society and, since they interact with humans, they should similarly use eye gaze to elevate the level of the interaction and increase humans’ perception of them. Previous studies have shown that robots possessing human-like gaze behaviour increase the interactants’ task performance and their perception of the robot. However, social robots must also be able to behave and respond appropriately when humans act inappropriately, and failure in doing so may normalize bad behaviour even towards other humans. Additionally, with the recent progress of wearable eyetracking technology, there is interest to see how this technology can be used to help generate human gaze into a robot. This thesis work investigates how the eye gaze behaviour from a human being can be modeled into the robot Furhat to behave more human-like in a confrontational scenario. It further investigates how a robot possessing the developed human-like gaze model compares to a robot using a believable heuristic gaze model. We created a pipeline which concerned selecting scenarios, conducting roleplays between actors of these scenarios to collect gaze, extracting and processing that gaze data and extracting probability distributions that the human-like model would utilise. Our model used frequencies to determine where to gaze and head rotation, while gamma distributions were used to sample gaze length. We then executed an online video study with the two robot conditions where participants rated either robot by filling out a questionnaire. The results show that while no statistical difference could be found, the human-like condition scored higher on the measures anthropomorphism/human-likeness and composure, whereas the heuristic condition rated higher on expertise and extroversion. As such, the human-like model did not yield a significant benefit on robot perception to opt for it. Still, we suggest that the pipeline used in this thesis work may help HRI researchers to perform gaze studies and possibly build a foundation for further development. / I vardaglig kommunikation använder människor sig av blickar på grund av dess betydelse som kommunikationsverktyg. Då teknologi ständigt utvecklas förväntas det att sociala robotar kommer att bli mer involverade i samhället, och eftersom de integrerar med människor så bör de på samma sätt använda sig av blickar och ögonrörelser för att höja nivån på interaktionen och därmed förbättra människors uppfattning av dem. Tidigare studier har visat att robotar som använder sig av blickar likt människor kan förbättra deltagarnas utförande av uppgifter samt deras uppfattning av roboten. Sociala robotar måste dock även kunna agera och svara på ett lämpligt sätt när människor beter sig olämpligt, och gör dem inte det finns risken att det olämpliga beteendet normaliseras, även i interaktioner med andra människor. Med de senaste framstegen av portabla eye-tracking enheter finns det därför ett intresse att se hur denna teknologi kan användas för att generera människolikt blickbeteende som sedan används i en robot. Denna studie undersöker hur en människas sätt att blicka och titta kan modelleras i roboten Furhat för att bete sig mer människolikt i ett scenario där konfrontation behövs. Studien undersöker dessutom hur en robot som bär ett människolikt blickbeteende jämför sig med en robot som bär ett trovärdigt heuristiskt blickbeteende. Vi skapade en struktur som involverade att välja scenarion, utföra rollspel mellan skådespelare i dessa scenarier för att samla data om deras blickmönster, extrahera och bearbeta denna data, och extraherade sannolikhetsfördelningar som den människolika modellen skulle använda sig av. Vår modell använde sig av frekvenser för att besluta var roboten skulle blicka, medan gammafördelningar användes för att generera blickens längd. Vi utförde därefter en videostudie online med de två robotvarianterna, där deltagare bedömde någon av robotarna genom att svara på en enkät. Resultaten visar att ingen statistisk signifikant skillnad kunde påvisas. Trender visade dock att modellen med människolik blickbeteende bedömdes högre i mätningen av attributerna antropomorfism/mänsklighet och fattning, medan den heuristiska modellen bedömdes högre i expertis och utåtvändighet. Därav erhöll den människolika modellen ingen signifikant framgång för att föredra den. Vi föreslår ändå att strukturen som användes i studien kan hjälpa MRI forskare att utföra studier som involverar blickbeteende hos människor, och möjligtvis bygga en grund för vidareutveckling av strukturen.
13

Die Erkennung bevorstehender Fahrstreifenwechsel mittels der Fusion und Klassifikation von Merkmalsgrößen des Fahrzeugumfelds, Fahrerverhaltens und Fahrzeugstatus

Leonhardt, Veit 18 December 2024 (has links)
Damit Fahrerassistenzsysteme das noch immer unfallträchtige Manöver des Fahrstreifenwechsels wirksam gegen Unfälle absichern können, benötigen sie zuverlässig wie frühzeitig Kenntnis der Situationen, denen ein solches folgen wird. Nur so sind sie in der Lage, ihre Unterstützung in wirklich allen Situationen zu leisten, in denen diese von Nutzen ist, ohne dafür unpassende Warnungen oder Eingriffe in die Fahrzeugführung in Kauf nehmen zu müssen und an Akzeptanz einzubüßen oder gar selbst zum Sicherheitsrisiko zu werden. Die größte Herausforderung stellt dabei die Komplexität und Vielfalt der im städtischen Verkehr vorkommenden Situationen dar. Bisherige Assistenzsysteme stützen sich zur Aktivierung ihrer Funktion entweder auf den Status des Fahrtrichtungsanzeigers oder werten das Überfahren einer Fahrstreifenbegrenzung als dann allerdings bereits laufenden Fahrstreifenwechsel. Das eine erfolgt nachweislich äußert unzuverlässig, mit dem anderen bleibt kaum mehr Zeit für eine frühzeitige, auf Situation und Fahrer abgestimmte Assistenz. Mit der vorliegenden Arbeit wird ein funktionierender Ansatz zur automatisierten Erkennung bevorstehender Fahrstreifenwechsel vorgestellt, als im Fahrzeug lauffähiges System implementiert und seine Funktion anhand realer Fahrdaten unter Beweis gestellt. Im Zentrum des Erkennungsansatzes stehen aus dem Fahrzeug heraus erfassbare Merkmalsgrößen des Fahrzeugumfelds, Fahrerverhaltens und Fahrzeugstatus, die mit Hilfe künstlicher neuronaler Netze fusioniert und klassifiziert werden. Die Entwicklung der Algorithmen sowie sämtliche Untersuchungen zu ihrer Leistungsfähigkeit beruhen auf Messdaten natürlichen Fahrverhaltens im Verkehr einer Großstadt, die in einer umfangreichen Realfahrtstudie mit einem mit Radar- und Kamerasensorik ausgestatteten Versuchsfahrzeug erhoben wurden. Basierend auf diesen Daten werden zunächst Parameter einer zonenbasierten Repräsentation des Fahrzeugumfelds, der Blickrichtung des Fahrers sowie Zustandsgrößen des Fahrzeugs auf ihre Eignung als Merkmalsgröße untersucht. Es wird gezeigt, inwieweit für verschiedene Arten von Fahrstreifenwechseln und in unterschiedlichem zeitlichen Abstand auf das Manöver bereits zwischen dem Wert einer Merkmalsgröße und dem Bevorstehen eines Fahrstreifenwechsels ein Zusammenhang besteht. Mit einer Auswahl geeigneter Merkmalsgrößen wird die Erkennung schließlich in verschiedenen Ausprägungen implementiert, mittels maschinellen Lernens parametrisiert und über alle Arten in den Daten vorkommender Fahrstreifenwechselsituationen evaluiert. Untersucht wird dabei nicht nur die Erkennungsleistung des Gesamtsystems für verschiedene Vorhersagehorizonte, sondern ebenso die einer Erkennung mit den Merkmalsgrößen nur jeweils eines der Aspekte Fahrzeugumfeld, Fahrerverhalten und Fahrzeugstatus sowie der Effekt des Einbeziehens auch der Merkmalswerthistorie.:Bibliographische Beschreibung i Inhaltsverzeichnis v Abkürzungs- und Symbolverzeichnis xi Abkürzungen xi Symbole xi Vorwort xiii 1 Einleitung 1 1.1 Motivation 1 1.2 Aktueller Stand der Forschung 4 1.3 Forschungslücken 11 1.4 Zielsetzung der Arbeit 12 1.5 Inhalt und Gliederung der Arbeit 14 1.6 Formelzeichen und Zahlenwerte 15 2 Die Fahrstreifenwechselsituation und der algorithmische Ansatz ihrer Erkennung 17 2.1 Grundlegende Begriffe 17 2.2 Modelle zur Beschreibung des Fahrstreifenwechsels 18 2.2.1 Das 3-Ebenen-Modell der kognitiven Prozesse zur Fahrzeugführung 18 2.2.2 Messbarkeit kognitiver Prozesse und der Fahrerintention 21 2.2.3 Das System Fahrer-Fahrzeug-Umwelt 23 2.2.4 Das Phasenmodell des Ablaufs eines Fahrstreifenwechsels 25 2.2.5 Das Modell der Fahrstreifenwechselsituation 26 2.3 Der prinzipielle Ansatz zur Erkennung von Fahrstreifenwechseln 30 2.4 Ein aspektübergreifender Erkennungsansatz im System Fahrer-Fahrzeug-Umwelt 31 3 Merkmalsgrößen zur Erkennung bevorstehender Fahrstreifenwechsel 35 3.1 Kriterien der Wahl der Merkmalsgrößen 35 3.2 Das Versuchsfahrzeug 36 3.2.1 Umfeldsensorik 37 3.2.2 Fahrersensorik 40 3.2.3 Rechentechnik 42 3.3 Definition und Berechnung der Merkmalsgrößen 42 3.3.1 Merkmalsgrößen des Fahrzeugumfelds 43 3.3.1.1 Existenz, Zugänglichkeit und Abstand benachbarter Fahrstreifen 43 3.3.1.2 Sensorübergreifendes Tracking umgebender Objekte als Grundlage 44 3.3.1.3 Einteilung des Fahrzeugumfelds in Zonen 45 3.3.1.4 Beschreibung der Belegung umgebender Zonen durch Objektparameter 49 3.3.1.5 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugumfelds 57 3.3.2 Merkmalsgrößen des Fahrerverhaltens 58 3.3.2.1 Kopfposition und Kopflage 59 3.3.2.2 Blickbereiche 60 3.3.2.3 Kurzreferenz zu den Merkmalsgrößen des Fahrerverhaltens 63 3.3.3 Merkmalsgrößen des Fahrzeugstatus 64 3.3.3.1 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugstatus 66 3.4 Synchrone Berechnung und Auswertung der Merkmalswerte 67 4 Realfahrtstudie zur Messdatenakquise 69 4.1 Studienteilnehmer 69 4.2 Studiendesign und Ablauf 70 4.3 Streckenverlauf 72 4.4 Erhobene Datensätze und Arten vorkommender Fahrstreifenwechselsituationen 73 5 Statistische Analyse und Einzelbewertung der Merkmalsgrößen 77 5.1 Metriken zur statistischen Bewertung der Merkmalsgrößen 77 5.1.1 Der t-Test 78 5.1.2 Die Effektstärke Cohen’s d 81 5.1.3 Die Effektstärke Hedges‘ g 82 5.1.4 Einordnung der Effektstärke 83 5.1.5 Auffassung der Messdaten und Durchführung der Evaluation 83 5.2 Bewertung aus Sicht des einzelnen Messdatums 85 5.2.1 Wahl und Berechnung der Metriken zur Bewertung aus Messdatensicht 85 5.2.2 Ergebnisse zur Signifikanz und Effektstärke aus Messdatensicht 87 5.3 Bewertung aus Sicht des einzelnen Manövers 97 5.3.1 Wahl und Berechnung der Metriken zur Bewertung aus Manöversicht 98 5.3.2 Ergebnisse zur Signifikanz und Effektstärke aus Manöversicht 100 5.4 Fazit der Evaluation und ausgewählter Satz von Merkmalsgrößen 108 6 Wissensbasiert modellierte Klassifikation mittels eines Bayes’schen Netzes 113 6.1 Verfahren zur wissensbasiert modellierten Klassifikation 113 6.1.1 Fuzzy-Logik 114 6.1.2 Support-Vector-Machines und Relevance-Vector-Machines 117 6.1.3 Bayes‘sche Netze 120 6.1.4 Hidden-Markov-Models 125 6.1.5 Die Wahl eines Bayes’schen Netzes zur wissensbasierten Modellierung 129 6.2 Umsetzung einer Erkennung auf Basis eines Bayes‘schen Netzes 130 6.2.1 Aufbau des modellierten Bayes’schen Netzes 131 6.3 Übergang zu einer auf maschinellem Lernen beruhenden Klassifikation 133 7 Künstliche neuronale Netze als Verfahren zur maschinell optimierten Klassifikation 135 7.1 Biologisches Vorbild und Entstehungsgeschichte 135 7.2 Aufbau und Funktionsweise künstlicher neuronaler Netze 137 7.3 Netzschichten und Netztopologie 141 7.4 Parametrisierung 143 7.4.1 Maschinelles Lernen und Optimierung durch Fehlerminimierung 144 7.4.2 Das Gradientenverfahren 146 7.4.3 Gütefunktion und Delta-Lernregel 149 7.4.4 Backpropagation 151 7.4.5 Inkrementelles und stapelweises Training 153 7.5 Abbildung zeitlicher Zusammenhänge 154 7.5.1 Zeitverzögerte neuronale Netze 154 7.5.2 Rekurrente neuronale Netze 156 7.5.3 Das Problem der verschwindenden und explodierenden Gradienten 158 7.5.4 Long-Short-Term-Memory 158 8 Neuronales Netz zur Erkennung jedes Bevorstehens eines Fahrstreifenwechsels 161 8.1 Anforderungen an die Erkennung und ihre Umsetzung 161 8.1.1 Forderung von Effektivität 161 8.1.2 Forderung von Echtzeitfähigkeit 162 8.1.3 Forderung von Realitätsnähe 162 8.1.4 Forderung einer geringen Modellkomplexität 162 8.1.5 Forderung einer gruppenweisen Verarbeitung der Merkmalsgrößen 163 8.2 Aufbau und Funktionsweise des Netzes 164 8.3 Modellierung der Merkmalswerthistorie 166 9 Maschinelle Parametrisierung des neuronalen Netzes 171 9.1 Assistenzbedingte Anforderungen an das Verhalten des Erkennungssystems 171 9.2 Vorbetrachtungen zur Gesamtfehlerdefinition 172 9.2.1 Detektionswert und Detektionsfehler als binäre Größen 173 9.2.2 Bewertung der Güte eines binären Klassifikators 174 9.2.3 Gewichtung der Fehlerklassen in der Gesamtfehlerfunktion 175 9.3 Gesamtfehlerfunktion 177 9.4 Optimierungsverfahren 180 9.5 Aufteilung und Filterung der Messdaten 181 9.6 Technische Umsetzung und Durchführung der Parametrisierung 183 10 Realisiertes Gesamtsystem zur Erkennung bevorstehender Fahrstreifenwechsel 185 10.1 Aufbau und Implementierung des Erkennungssystems 185 11 Empirische Evaluation der realisierten Erkennungsleistung 191 11.1 Evaluationsmethode 191 11.2 Erkennungsleistung des Gesamtsystems 193 11.3 Erkennungsleistung der Merkmalsgruppen in Abhängigkeit des Zeithorizonts 195 11.4 Beitrag der Modellierung der Merkmalswerthistorie 199 11.5 Beitrag der gruppenübergreifenden Fusion von Merkmalsgrößen 202 11.6 Abhängigkeiten der Ergebnisse und sie beeinflussende Faktoren 204 12 Zusammenfassung und Ausblick 207 A Anhang 219 A.1 Tracking der Objekte im Fahrzeugumfeld 219 A.1.1 Prinzip des Unscented-Kalman-Filters und CTRV Bewegungsmodells 219 A.1.2 Probabilistische Multi-Sensor-Multi-Objekt-Messdatenzuordnung 222 A.1.3 Initialisierung, Nutzung und Auflösung von Objektschätzungen 228 A.2 Tabellen zur Signifikanz und Stärke des Effekts einzelner Merkmalsgrößen 229 Literaturverzeichnis 233 Abbildungsverzeichnis 251 Tabellenverzeichnis 253 / In order to enable driver assistance systems to effectively safeguard the still accident-prone manoeuvre of changing lanes against accidents, they need reliable and early knowledge of any situation that will be followed by such a manoeuvre. Only then they will be able to provide assistance in all the situations in which it is useful without having to accept inappropriate warnings or interventions in vehicle control and so losing acceptance or even becoming a safety risk themselves. The biggest challenge here is the complexity and variety of situations occurring in urban traffic. Current assistance systems either rely on the status of the direction indicator to activate their function or interpret the crossing of a lane boundary as a lane change that is already in progress. The former has been proven to be very unreliable, while the latter leaves hardly any time for early assistance tailored to the situation and driver. This work presents a functional approach to the automated detection of impending lane changes, implements it as an in-vehicle system and demonstrates its functionality by using real driving data. The detection approach centres on feature variables of the driving situation, driver behaviour and vehicle status that can be recorded from a vehicle and which are fused and classified with the help of artificial neural networks. The development of the algorithms and all investigations into their performance are based on measurement data of natural driving behaviour in traffic in a bigger city that were collected in an extensive naturalistic driving study with a test vehicle equipped with radar and camera sensors. Based on these data, parameters from a zone-based representation of the surroundings of the vehicle, the direction of the driver’s glances and vehicle state variables are first analysed for their suitability as feature variables. For different types of lane changes and at different time intervals to the manoeuvre it is shown to what extent there already is a correlation between the value of a variable and the imminence of a lane change. Using a selection of suitable feature variables the automated detection is finally implemented in various versions, parameterised by means of machine learning and evaluated across all types of lane change situations occurring in the data. Not only the detection performance of the overall system for different prediction horizons is investigated but also the detection with the feature variables of only one of the aspects driving situation, driver behaviour and vehicle status as well as the effect of including the feature value history.:Bibliographische Beschreibung i Inhaltsverzeichnis v Abkürzungs- und Symbolverzeichnis xi Abkürzungen xi Symbole xi Vorwort xiii 1 Einleitung 1 1.1 Motivation 1 1.2 Aktueller Stand der Forschung 4 1.3 Forschungslücken 11 1.4 Zielsetzung der Arbeit 12 1.5 Inhalt und Gliederung der Arbeit 14 1.6 Formelzeichen und Zahlenwerte 15 2 Die Fahrstreifenwechselsituation und der algorithmische Ansatz ihrer Erkennung 17 2.1 Grundlegende Begriffe 17 2.2 Modelle zur Beschreibung des Fahrstreifenwechsels 18 2.2.1 Das 3-Ebenen-Modell der kognitiven Prozesse zur Fahrzeugführung 18 2.2.2 Messbarkeit kognitiver Prozesse und der Fahrerintention 21 2.2.3 Das System Fahrer-Fahrzeug-Umwelt 23 2.2.4 Das Phasenmodell des Ablaufs eines Fahrstreifenwechsels 25 2.2.5 Das Modell der Fahrstreifenwechselsituation 26 2.3 Der prinzipielle Ansatz zur Erkennung von Fahrstreifenwechseln 30 2.4 Ein aspektübergreifender Erkennungsansatz im System Fahrer-Fahrzeug-Umwelt 31 3 Merkmalsgrößen zur Erkennung bevorstehender Fahrstreifenwechsel 35 3.1 Kriterien der Wahl der Merkmalsgrößen 35 3.2 Das Versuchsfahrzeug 36 3.2.1 Umfeldsensorik 37 3.2.2 Fahrersensorik 40 3.2.3 Rechentechnik 42 3.3 Definition und Berechnung der Merkmalsgrößen 42 3.3.1 Merkmalsgrößen des Fahrzeugumfelds 43 3.3.1.1 Existenz, Zugänglichkeit und Abstand benachbarter Fahrstreifen 43 3.3.1.2 Sensorübergreifendes Tracking umgebender Objekte als Grundlage 44 3.3.1.3 Einteilung des Fahrzeugumfelds in Zonen 45 3.3.1.4 Beschreibung der Belegung umgebender Zonen durch Objektparameter 49 3.3.1.5 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugumfelds 57 3.3.2 Merkmalsgrößen des Fahrerverhaltens 58 3.3.2.1 Kopfposition und Kopflage 59 3.3.2.2 Blickbereiche 60 3.3.2.3 Kurzreferenz zu den Merkmalsgrößen des Fahrerverhaltens 63 3.3.3 Merkmalsgrößen des Fahrzeugstatus 64 3.3.3.1 Kurzreferenz zu den Merkmalsgrößen des Fahrzeugstatus 66 3.4 Synchrone Berechnung und Auswertung der Merkmalswerte 67 4 Realfahrtstudie zur Messdatenakquise 69 4.1 Studienteilnehmer 69 4.2 Studiendesign und Ablauf 70 4.3 Streckenverlauf 72 4.4 Erhobene Datensätze und Arten vorkommender Fahrstreifenwechselsituationen 73 5 Statistische Analyse und Einzelbewertung der Merkmalsgrößen 77 5.1 Metriken zur statistischen Bewertung der Merkmalsgrößen 77 5.1.1 Der t-Test 78 5.1.2 Die Effektstärke Cohen’s d 81 5.1.3 Die Effektstärke Hedges‘ g 82 5.1.4 Einordnung der Effektstärke 83 5.1.5 Auffassung der Messdaten und Durchführung der Evaluation 83 5.2 Bewertung aus Sicht des einzelnen Messdatums 85 5.2.1 Wahl und Berechnung der Metriken zur Bewertung aus Messdatensicht 85 5.2.2 Ergebnisse zur Signifikanz und Effektstärke aus Messdatensicht 87 5.3 Bewertung aus Sicht des einzelnen Manövers 97 5.3.1 Wahl und Berechnung der Metriken zur Bewertung aus Manöversicht 98 5.3.2 Ergebnisse zur Signifikanz und Effektstärke aus Manöversicht 100 5.4 Fazit der Evaluation und ausgewählter Satz von Merkmalsgrößen 108 6 Wissensbasiert modellierte Klassifikation mittels eines Bayes’schen Netzes 113 6.1 Verfahren zur wissensbasiert modellierten Klassifikation 113 6.1.1 Fuzzy-Logik 114 6.1.2 Support-Vector-Machines und Relevance-Vector-Machines 117 6.1.3 Bayes‘sche Netze 120 6.1.4 Hidden-Markov-Models 125 6.1.5 Die Wahl eines Bayes’schen Netzes zur wissensbasierten Modellierung 129 6.2 Umsetzung einer Erkennung auf Basis eines Bayes‘schen Netzes 130 6.2.1 Aufbau des modellierten Bayes’schen Netzes 131 6.3 Übergang zu einer auf maschinellem Lernen beruhenden Klassifikation 133 7 Künstliche neuronale Netze als Verfahren zur maschinell optimierten Klassifikation 135 7.1 Biologisches Vorbild und Entstehungsgeschichte 135 7.2 Aufbau und Funktionsweise künstlicher neuronaler Netze 137 7.3 Netzschichten und Netztopologie 141 7.4 Parametrisierung 143 7.4.1 Maschinelles Lernen und Optimierung durch Fehlerminimierung 144 7.4.2 Das Gradientenverfahren 146 7.4.3 Gütefunktion und Delta-Lernregel 149 7.4.4 Backpropagation 151 7.4.5 Inkrementelles und stapelweises Training 153 7.5 Abbildung zeitlicher Zusammenhänge 154 7.5.1 Zeitverzögerte neuronale Netze 154 7.5.2 Rekurrente neuronale Netze 156 7.5.3 Das Problem der verschwindenden und explodierenden Gradienten 158 7.5.4 Long-Short-Term-Memory 158 8 Neuronales Netz zur Erkennung jedes Bevorstehens eines Fahrstreifenwechsels 161 8.1 Anforderungen an die Erkennung und ihre Umsetzung 161 8.1.1 Forderung von Effektivität 161 8.1.2 Forderung von Echtzeitfähigkeit 162 8.1.3 Forderung von Realitätsnähe 162 8.1.4 Forderung einer geringen Modellkomplexität 162 8.1.5 Forderung einer gruppenweisen Verarbeitung der Merkmalsgrößen 163 8.2 Aufbau und Funktionsweise des Netzes 164 8.3 Modellierung der Merkmalswerthistorie 166 9 Maschinelle Parametrisierung des neuronalen Netzes 171 9.1 Assistenzbedingte Anforderungen an das Verhalten des Erkennungssystems 171 9.2 Vorbetrachtungen zur Gesamtfehlerdefinition 172 9.2.1 Detektionswert und Detektionsfehler als binäre Größen 173 9.2.2 Bewertung der Güte eines binären Klassifikators 174 9.2.3 Gewichtung der Fehlerklassen in der Gesamtfehlerfunktion 175 9.3 Gesamtfehlerfunktion 177 9.4 Optimierungsverfahren 180 9.5 Aufteilung und Filterung der Messdaten 181 9.6 Technische Umsetzung und Durchführung der Parametrisierung 183 10 Realisiertes Gesamtsystem zur Erkennung bevorstehender Fahrstreifenwechsel 185 10.1 Aufbau und Implementierung des Erkennungssystems 185 11 Empirische Evaluation der realisierten Erkennungsleistung 191 11.1 Evaluationsmethode 191 11.2 Erkennungsleistung des Gesamtsystems 193 11.3 Erkennungsleistung der Merkmalsgruppen in Abhängigkeit des Zeithorizonts 195 11.4 Beitrag der Modellierung der Merkmalswerthistorie 199 11.5 Beitrag der gruppenübergreifenden Fusion von Merkmalsgrößen 202 11.6 Abhängigkeiten der Ergebnisse und sie beeinflussende Faktoren 204 12 Zusammenfassung und Ausblick 207 A Anhang 219 A.1 Tracking der Objekte im Fahrzeugumfeld 219 A.1.1 Prinzip des Unscented-Kalman-Filters und CTRV Bewegungsmodells 219 A.1.2 Probabilistische Multi-Sensor-Multi-Objekt-Messdatenzuordnung 222 A.1.3 Initialisierung, Nutzung und Auflösung von Objektschätzungen 228 A.2 Tabellen zur Signifikanz und Stärke des Effekts einzelner Merkmalsgrößen 229 Literaturverzeichnis 233 Abbildungsverzeichnis 251 Tabellenverzeichnis 253

Page generated in 0.0518 seconds