• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fast simulation of (nearly) incompressible nonlinear elastic material at large strain via adaptive mixed FEM

Balg, Martina, Meyer, Arnd 19 October 2012 (has links) (PDF)
The main focus of this work lies in the simulation of the deformation of mechanical components which consist of nonlinear elastic, incompressible material and that are subject to large deformations. Starting from a nonlinear formulation one can derive a discrete problem by using linearisation techniques and an adaptive mixed finite element method. This turns out to be a saddle point problem that can be solved via a Bramble-Pasciak conjugate gradient method. With some modifications the simulation can be improved.
2

Fast simulation of (nearly) incompressible nonlinear elastic material at large strain via adaptive mixed FEM

Balg, Martina, Meyer, Arnd 19 October 2012 (has links)
The main focus of this work lies in the simulation of the deformation of mechanical components which consist of nonlinear elastic, incompressible material and that are subject to large deformations. Starting from a nonlinear formulation one can derive a discrete problem by using linearisation techniques and an adaptive mixed finite element method. This turns out to be a saddle point problem that can be solved via a Bramble-Pasciak conjugate gradient method. With some modifications the simulation can be improved.:1. Introduction 2. Basics 3. Mixed variational formulation 4. Solution method 5. Error estimation 6. LBB conditions 7. Improvement suggestions
3

On efficient a posteriori error analysis for variational inequalities

Köhler, Karoline Sophie 14 November 2016 (has links)
Effiziente und zuverlässige a posteriori Fehlerabschätzungen sind eine Hauptzutat für die effiziente numerische Berechnung von Lösungen zu Variationsungleichungen durch die Finite-Elemente-Methode. Die vorliegende Arbeit untersucht zuverlässige und effiziente Fehlerabschätzungen für beliebige Finite-Elemente-Methoden und drei Variationsungleichungen, nämlich dem Hindernisproblem, dem Signorini Problem und dem Bingham Problem in zwei Raumdimensionen. Die Fehlerabschätzungen hängen vom zum Problem gehörenden Lagrange Multiplikator ab, der eine Verbindung zwischen der Variationsungleichung und dem zugehörigen linearen Problem darstellt. Effizienz und Zuverlässigkeit werden bezüglich eines totalen Fehlers gezeigt. Die Fehleranschätzungen fordern minimale Regularität. Die Approximation der exakten Lösung erfüllt die Dirichlet Randbedingungen und die Approximation des Lagrange Multiplikators ist nicht-positiv im Falle des Hindernis- und Signoriniproblems, und hat Betrag kleiner gleich 1 für das Bingham Problem. Dieses allgemeine Vorgehen ermöglicht das Einbinden nicht-exakter diskreter Lösungen, welche im Kontext dieser Ungleichungen auftreten. Aus dem Blickwinkel der Anwendungen ist Effizienz und Zuverlässigkeit im Bezug auf den Fehler der primalen Variablen in der Energienorm von großem Interesse. Solche Abschätzungen hängen von der Wahl eines effizienten diskreten Lagrange Multiplikators ab. Im Falle des Hindernis- und Signorini Problems werden postive Beispiele für drei Finite-Elemente Methoden, der konformen Courant Methode, der nicht-konformen Crouzeix-Raviart Methode und der gemischten Raviart-Thomas Methode niedrigster Ordnung hergeleitet. Partielle Resultate liegen im Fall des Bingham Problems vor. Numerischer Experimente heben die theoretischen Ergebnisse hervor und zeigen Effizienz und Zuverlässigkeit. Die numerischen Tests legen nahe, dass der aus den Abschätzungen resultierende adaptive Algorithmus mit optimaler Konvergenzrate konvergiert. / Efficient and reliable a posteriori error estimates are a key ingredient for the efficient numerical computation of solutions for variational inequalities by the finite element method. This thesis studies such reliable and efficient error estimates for arbitrary finite element methods and three representative variational inequalities, namely the obstacle problem, the Signorini problem, and the Bingham problem in two space dimensions. The error estimates rely on a problem connected Lagrange multiplier, which presents a connection between the variational inequality and the corresponding linear problem. Reliability and efficiency are shown with respect to some total error. Reliability and efficiency are shown under minimal regularity assumptions. The approximation to the exact solution satisfies the Dirichlet boundary conditions, and an approximation of the Lagrange multiplier is non-positive in the case of the obstacle and Signorini problem and has an absolute value smaller than 1 for the Bingham flow problem. These general assumptions allow for reliable and efficient a posteriori error analysis even in the presence of inexact solve, which naturally occurs in the context of variational inequalities. From the point of view of the applications, reliability and efficiency with respect to the error of the primal variable in the energy norm is of great interest. Such estimates depend on the efficient design of a discrete Lagrange multiplier. Affirmative examples of discrete Lagrange multipliers are presented for the obstacle and Signorini problem and three different first-order finite element methods, namely the conforming Courant, the non-conforming Crouzeix-Raviart, and the mixed Raviart-Thomas FEM. Partial results exist for the Bingham flow problem. Numerical experiments highlight the theoretical results, and show efficiency and reliability. The numerical tests suggest that the resulting adaptive algorithms converge with optimal convergence rates.

Page generated in 0.1041 seconds