• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 46
  • 34
  • 9
  • 9
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 280
  • 280
  • 133
  • 44
  • 39
  • 37
  • 34
  • 33
  • 31
  • 30
  • 27
  • 24
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Characterization of Polysaccharide Biosynthesis, Structure and Regulation in Vibrio vulnificus

Nakhamchik, Alina 20 January 2009 (has links)
Vibrio vulnificus are marine bacteria causing fatal septicemia through wound infections or consumption of contaminated seafood. V. vulnificus is an excellent model for the study of surface polysaccharides, as it is capable of synthesizing capsular polysaccharide (CPS), lipopolysaccharide (LPS) and exopolysaccharide (EPS). V. vulnificus strains exhibit a multitude of carbotypes that evolve through unknown mechanisms. CPS is a confirmed virulence factor, but the genetics of its biosynthesis are unknown. The main objective of these experiments was to gain insight into the biosynthesis, regulation and evolution of ATCC 27562 outer surface polysaccharides. A miniTn10 transposon (Tn) system was used for mutagenesis and single insertions were confirmed through Southern analysis. A novel 25 kb CPS biosynthesis locus was identified through sequencing of regions surrounding Tn insertions; a region encoding putative LPS core biosynthetic functions was identified adjacent to the CPS cluster. The CPS locus contained features of O-antigen biosynthetic loci and was unusual in carrying characteristics of both group I and IV capsular biosynthetic loci. Mutations in this region resulted in elimination of CPS and LPS, and both were shown to be dependent on the activity of the polymerase Wzy. Evidence is presented here supporting horizontal transfer (HT) as a contributor to V. vulnificus CPS evolution. CPS regions of V. vulnificus 27562, YJ016 and CMCP6 contain strain specific genes surrounded by conserved regions, suggestive of HT. Moreover, a CPS locus virtually identical to that of 27562 was discovered in Shewanella putrefaciens strain 200. 27562 CPS is distinctive as it contains N-acetylmuramic acid. Genes encoding murA and murB activities were identified within the cluster and shown to be functionally redundant, supporting HT acquisition of this region. A screen of V. vulnificus gDNA library using CPS biosynthesis and transport mutants identified a cyclic diguanylate cyclase, dcpA. dcpA-mediated increase in cyclic diguanylate lead to EPS production, rugosity phenotypes and enhanced biofilm formation. Interestingly, virulence and motility were not affected suggesting complexity of cyclic diguanylate regulation in V. vulnificus, supported by the large number of cyclic diguanylate related proteins in Vulnificus strains.
72

Biophysical and structural studies of the antirestriction proteins ArdA and KlcA

Serfiotis-Mitsa, Dimitra January 2009 (has links)
Gene orf18, which is situated in the conjugative transposon Tn916 from the bacterial pathogen Enterococcus faecalis, encodes a putative ArdA (alleviation of restriction of DNA) protein. ArdA from Tn916 may be responsible for the apparent immunity of the transposon to DNA restriction and modification (R/M) systems and for ensuring that the transposon has a broad host range. The orf18 gene was engineered for overexpression in Escherichia coli and the recombinant ArdA protein was purified to homogeneity. Biophysical characterisation of ArdA demonstrated tight association between ArdA and the M.EcoKI. Also, ArdA was shown to efficiently inhibit restriction and modification by all four major classes of Type I R/M enzymes in vivo. Thus, ArdA can overcome the restriction barrier following conjugation and so helps to increase the spread of antibiotic resistance genes by horizontal gene transfer. The amino acid sequence of KlcA, from the incompatibility plasmid pBP136 from Bordetella pertussis, showed a high degree of similarity with the antirestriction protein ArdB from the IncN plasmid pKM101. In this study the solution structure of KlcA was solved with high-resolution NMR and its antirestriction function demonstrated. The structure of KlcA showed a rigid globular molecule with a novel fold. No antimodification function was observed for KlcA in vivo and the antirestriction function of KlcA has been successfully shown in vivo but not in vitro. Because no direct binding of KlcA to EcoKI was observed in vitro, the mechanism of the endonuclease blocking was assumed to be different from that of ArdA. Preliminary experiments including coimmunoprecipitation assays were conducted in order to elucidate the antirestriction mechanism of KlcA.
73

Nouveaux outils exploratoires et développement d'approches thérapeutiques dans les dysferlinopathies primaires / Development of novel diagnosis tools and exploration of innovative therapeutic approaches in primary dysferlinopathies

Wein, Nicolas 09 December 2010 (has links)
Les dysferlinopathies constituent un groupe de dystrophies musculaires autosomiques récessives comprenantprincipalement la myopathie des ceintures (LGMD) de type 2B et la myopathie distale de Miyoshi. Elles sont causéespar des mutations dans le gène DYSF qui se situe dans la région chromosomique 2p13.1-13.3 (NM_003494). Ce gènecomporte 55 exons répartis sur plus de 230 kb. Il est exprimé principalement dans le muscle squelettique etcardiaque, mais également dans d'autres tissus (placenta...) et types cellulaires tels que lesmonocytes/macrophages. La dysferline (2080 acides aminés, 237 kDa, O75923) fait partie de la famille des Ferlineset comporte 7 domaines C2, senseur de calcium et un domaine transmembranaire C-terminal.La dysferline participe à la formation des tubules-T et à la fusion des myoblastes en myotubes avec lamyoferline (un autre membre de la famille). Elle est localisée au sarcolemme de la fibre musculaire squelettiqueadulte, où elle joue un rôle dans sa réparation. En effet, chez l’homme comme dans les modèles murins, en absencede dysferline, des vésicules, dont la nature n’est pas clairement établie, s’accumulent sous le sarcolemme lésé sansfusionner avec celui-ci. Elle interagirait avec plusieurs protéines membranaires ou cytosoliques, dont certaines(comme la cavéoline 3) sont aussi impliquées dans d’autres formes de LGMD.Au cours de ma thèse, mon travail a été axé d’une part sur l’amélioration des techniques de diagnostic : étudede délétion/duplication dans le gène DYSF par CGH et le développement d’un test permettant d’évaluerl’absence/présence de la dysferline à partir de sang total par des techniques de FACS et d’immunofluorescence.D’autre part j’ai également étudié la pertinence d’approches thérapeutiques. Ainsi, nous avons mis en évidence unelarge délétion homozygote des ¾ du gène DYSF chez une patiente présentant un phénotype modéré dedysferlinopathies. Cette délétion permet cependant la production d’une dysferline tronquée. L’identification decette miniprotéine, la première identifiée à ce jour a permis de mettre en évidence l’aspect en partie modulaire dela dysferline. Une autre donnée sur le caractère modulaire de la dysferline est apparue dans la littérature, cette foismontrant le caractère dispensable de l’exon 32. Sur la base de cette observation clinique, nous avons développéune approche thérapeutique par saut d’exon pour les dysferlinopathies, en démontrant dans un premier temps safaisabilité technique sur l’exon 32.L’ensemble de ces travaux permettront probablement l’amélioration du diagnostic différentiel desdysferlinopathies, tout en fournissant de nouvelles pistes pour comprendre les rôles de la dysferline et offrir ainsides pistes thérapeutiques pour le traitement de patients souffrant de ces pathologies. / Dysferlinopathies are a group of autosomal recessive muscular disorders including mainly limb girdlemuscular dystrophy 2B (LGMD2B) and Miyoshi Myopathy (MM), caused by mutation in DYSF gene (2p13.1-13.3). It is composed by 55 exons spreading on 234 kb of genomic DNA and it is expressed mainly in skeletal and heart muscle and monocytes/macrophages.Dysferlin (2080 amino-acids, molecular weight 237 kDa) belongs to the Ferlin family as Myoferline, which is also expressed in muscle. Dysferlin is involved with Myoferlin in myoblasts fusion and T-tubule formation. In adult skeletal muscle, Dysferlin is localized at the sarcolemma where it plays its main function: the sarcolemma repair after muscular wounding. It has been suggested that Dysferlin allows them to fuse with the plasma membrane in order to provide the required plasma membrane to reseal the wound. During these years, my work was essentially focused on the improvement of diagnosis technique (evaluation of CGH array to detect deletion/duplication event in DYSF gene and development of test able to detect absence/presence of Dysferlin in whole blood), the functional exploration of diagnosis technique (evaluation of CGH array to detect deletion/duplication event in DYSF gene and development of test able to detect absence/presence of Dysferlin in whole blood), and the development of promising therapeutics approaches: AAV gene transfer of a minidysferlin which was identified in patient presenting a mild phenotype and for the first time the demonstration of the feasibility of an exon-skipping therapeutics strategy for dysferlinopathies.
74

Experimental Evolution : and Fitness Effects of Mutations

Knöppel, Anna January 2016 (has links)
Bacteria have small, streamlined genomes and evolve rapidly. Their large population sizes allow selection to be the main driver of evolution. With advances in sequencing technologies and precise methods for genetic engineering, many bacteria are excellent models for studying elementary questions in evolutionary biology. The work in this thesis has broadly been devoted to adaptive evolution and fitness effects of different types of mutations. In Paper I we experimentally tested the fitness constrains of horizontal gene transfer (HGT), which could be used to predict how the fixation of HGT events are affected by selection and fitness effects. We found that the majority of the examined HGT inserts were indistinguishable from neutral, implying that extra DNA transferred by HGT, even though it does not confer an immediate selective advantage, could be maintained at transfer-selection balance and serve as a reservoir for the evolution of novel beneficial functions. Paper II examined why four synonymous mutations in rpsT (encoding ribosomal protein S20) reduced fitness, and how this cost could be genetically compensated. We found that the cause for the fitness reduction was low S20 levels and that this lead to a defective subpopulation of 30S subunits lacking S20. In an adaptive evolution experiment, these impairments were compensated by up-regulation of S20 though various types of mutations. In Paper III we continued the studies of how the deleterious rpsT mutations could be compensated. The mutations either down-regulated the global regulator Fis or altered a subunit of the RNA polymerase (rpoA). We found that the decreased S20 levels in the cells causes an assembly defect of the 30S particles and that the fis and rpoA mutations restored the skewed S20:ribosome ratio by both increasing S20 levels and decreasing other ribosomal components. Paper IV examined adaptation of two bacterial species to different growth media. A total of 142 different adaptive mutations were identified and 112 mutants were characterized in terms of fitness. We found that the experimental variation in fitness measurements could be reduced 10-fold by introducing some adaptive mutations prior to the experiment, allowing measurements of fitness differences as small as 0.04%.
75

CHARACTERIZATION OF TRANSFER OF THE MOBILE GENOMIC ISLAND ENCODING METHICILLIN RESISTANCE AMONG STAPHYLOCOCCI

Ray, Melissa D 01 January 2015 (has links)
The gene encoding methicillin resistance in Staphylococcus aureus (MRSA) is carried in the chromosome on a large genomic island called SCCmec and is always inserted at the att site within orfX. SCCmec has been designated a mobile genetic element but a mechanism by which it moves among different strains and species of staphylococci has never been demonstrated. This work shows that bacteriophage 80α is capable of transducing SCCmec into a recipient cell, after which it can integrate into the bacterial chromosome via homologous recombination. More importantly, this work characterizes a conjugative mechanism of SCCmec transfer. Results demonstrate the capture of a 30.8 kb SCCmec element on a conjugative plasmid for the first time, its transfer into both S. aureus and S. epidermidis recipients, and its excision from the plasmid with insertion in the orfX att site in recipients. The element was integrated into the plasmid by recombination between IS elements invariably present on all SCCmec types and pGO1/pSK41-like conjugative plasmids. These data explain the movement of SCCmec from reservoirs in commensal coagulase-negative staphylococci into different Staphylococcus aureus lineages using a ubiquitous conjugative plasmid that can transfer among staphylococci of different species and, thus, describes a mechanism for the environmental dissemination of methicillin resistance in nature.
76

Virulence of Mayetiola destructor (Say) field populations in the Great Plains and levanase/inulase-like genes in the Hessian fly genome

Carrera, Sandra Garcés January 1900 (has links)
Doctor of Philosophy / Department of Entomology / Ming-Shun Chen / C. Michael Smith / The Hessian fly, Mayetiola destructor (Say), is a major pest of wheat, and is controlled mainly through deploying fly-resistant wheat cultivars. This study investigated five M. destructor populations collected from Texas, Louisiana, and Oklahoma, where infestation by Hessian fly has been high in recent years. Eight resistance genes including H12, H13, H17, H18, H22, H25, H26, and Hdic, were found to be highly effective against all tested M. destructor populations in this region, conferring resistance to 80% or more of plants containing one of these resistant genes. The frequency of biotypes virulent to resistant genes ranged from 0 to 45%. A logistic regression model was established to predict biotype frequencies based on the correlation between the percentages of susceptible plants obtained in a virulence test. In addition to the virulence test, the log-odds of virulent biotype frequencies were determined by a traditional approach to predict the logistic regression model. Characterization of a bacterial artificial chromosome (BAC) clone identified a gene encoding a protein with sequence similarity to bacterial levanases. Blast searching with the levanase-like protein identified 14 levanase/inulase-like genes or gene fragments. In this study, we determined the expression levels of these genes in different developmental stages and different tissues of 3-d old larvae of M. destructor. Sequence analysis revealed that six genes encode full length proteins, three were truncated at the 5’ end, and five truncated at the 3’ end. Sequences of putative proteins showed approximately 42% similarities to bacterial levanases or inulases, and 36% similarity to fungal levanases or inulases. No sequence similarities were found with any known animal or plant proteins. Comparative analysis of sequences among 14 levanase/inulase-like genes revealed that positions for intron/exon boundaries are conserved among different genes even though the length of each intron and exon varied among different genes. The expression patterns of the levanase/inulase-like genes were different among developmental stages and larval tissues of M. destructor. Interestingly, three genes presented alternative splicing bands in different developmental stages, and two genes exhibited splicing bands in different tissues of 3 d old M. destructor. This study would be useful for future studies of the characterization and function of levanase/inulase-like genes of these enzymes in plant-insect interactions.
77

Factors that affect horizontal gene transfer in enteric bacteria

Peterson, Gregory Jay January 1900 (has links)
Doctor of Philosophy / Department of Diagnostic Medicine/Pathobiology / Sanjeev Narayanan / Antimicrobial resistance (AMR) has arisen as one of the most important public health concerns in the last 60 years. AMR results from pathogenic strains of bacteria adapting to antimicrobial-containing environments through mutations or through horizontal gene transfer (HGT) of genetic material containing resistance genes. Conjugation machinery offers an efficient method for acquisition of AMR and virulence genes, which may be responsible for propelling the evolution of pathogenic bacteria. This dissertation explores the factors, specifically catecholamines and antimicrobials that influence the conjugation frequencies of enteric bacteria including Salmonella, E. coli and Enterococcus. We found that the catecholamine norepinephrine (NE) at physiological concentrations enhanced conjugation efficiencies of a conjugative plasmid from a clinical strain of Salmonella Typhimurium to an E. coli recipient in vitro. Additional experiments determined the influence of the antimicrobial concentrations above, equal to and below the minimum inhibitory concentration (MIC) under in vitro conditions on conjugation efficiencies using an Enterococcus to Enterococcus mating pair in addition to the Salmonella to E. coli mating pair. Conjugation occurred in all concentrations, but efficiencies of transfer were consistently low in 0 MIC and 1 MIC, with increased activity both above and below 1 MIC. These data were fit to a previously described mathematical model and the rate constant E that relates the rate of gene transfer to drug concentration was determined. The data showed highly similar patterns of conjugation efficiencies when compared to the rate constant E. A final study we measured conjugation frequencies when donor Salmonella Typhimurium and the E. coli recipient were exposed to both variable concentrations of oxytetracycline and NE. Conjugation was increased pre- and post- MIC, but conjugation frequencies were not enhanced further by the combination of the oxytetracycline and the NE. This dissertation defines the role of outside factors in conjugative gene transfer, and may provide future insight into better control of AMR.
78

Genome analysis of the haloalkaliphilic bacterium Rhodobaca barguzinensis

KOPEJTKA, Karel January 2019 (has links)
This PhD thesis presents results of a research focussed on the evolution of phototrophy in the bacterial order Rhodobacterales with a special regard to its haloalkaliphilic representatives. The photoheterotrophic bacterium Rhodobaca barguzinensis alga05 was used as an organism of choice. Its phylogeny, genome organization, and metabolic potential was characterized. The main result of the thesis is that phototrophy is a genuine trait among the haloalkaliphilic representatives of the Rhodobacter-Rhodobaca group inside the Rhodobacterales clade.
79

Origem, evolução e relações filogenéticas de homólogos de prolina racemase em espécies de Trypanosoma. / Origin, evolution and phylogenetic relationships of proline racemase homologs from species of Trypanosoma.

Espinosa, Zuleima Del Carmen Caballero 30 October 2014 (has links)
Os genes de Prolina racemase (PRACs) são enzimas intracelulares ou secretadas de T. cruzi (TcPRAC); essas enzimas estão envolvidas no metabolismo, diferenciação e virulência. Os genes PRAC foram identificados e caracterizados molecularmente em isolados representantes de toda a diversidade interespecífica de T. cruzi, T. cruzi marinkellei, T. dionisii, T. erneyi, T. rangeli, T. conorhini e T. lewisi. Além dessas espécies de tripanossomas restritas a mamíferos; homólogos de PRAC foram encontrados em tripanossomas de cobra (T. serpentis), crocodilo (T. grayi) e anuro (T. sp. 339). Análises filogenéticas e de sintenia entre homólogos de PRAC suportaram uma historia evolutiva totalmente congruente com as relações evolutivas previamente descritas dentro do gênero Trypanosoma. / Proline racemaces (PRACs) are intracellular or secreted enzymes of Trypanosoma cruzi (TcPRAC), implicated in metabolism, differentiation, virulence and the induction of nonspecific polyclonal B-lymphocyte in the host. We identified and molecularly characterized PRAC genes from isolates representing all intra-specific diversity (TcI-TcVI and Tcbat), T. cruzi marinkellei, T. dionisii, T. erneyi, T. rangeli (isolates of lineages A-E), T. conorhini, and T. lewisi. In addition to these trypanosome species restricted to mammals, PRAC homologs were found in trypanosomes from snake (T. serpentis), crocodile (T. grayi) and anuran (T. sp 339). Phylogenetic and synteny analysis of PRAC homologs supported an evolutionary history totally congruent with the evolutionary relationships within the genus Trypanosoma.
80

The evolution of codon usage and base composition

Perry, Richard Henry John January 2015 (has links)
This thesis aims to address issues relating to genome architecture and base composition. The first part of this thesis addresses questions relating to codon usage. Initially I will investigate thousands of bacterial species using a detailed analysis of strengths of selection acting upon codons usage while also investigating patterns of optimal codon changes with respect to genomic base composition and tRNA abundance. I report that selection on codon usage increases throughout the length of highly expressed genes, in particular, the first quarter of genes have significantly lower selection. Further, it is clear that factors affecting genomic base composition can eventually lead to changes in optimal codons if the change in base composition is strong enough, however these patterns differ substantially between amino acids. The debate over translational efficiency vs. accuracy was addressed by comparing sites of differing conservation. Differing conservation were defined using a phylogenetic method, allowing sites to change in their extent of conservation throughout the tree. The results show that translational accuracy acts strongly on the top 10% of conserved sites, however is relatively weak when compared to the efficiency for other sites. Also detected is a reduction in apparent selection on codon usage on the bottom 10% of conserved sites which is likely to be caused by conflicting positive selection on amino acids. Finally, although differences in patterns are observed between amino acids, the general relationship to conservation is similar. As much of the variation in codon usage is determined by variation in base composition, this aspect of base composition is investigated in the second part of the thesis. The observed variation in intragenomic base composition in bacteria was found to be far higher than expected for GC-rich bacteria. The non-core part of the genome contributes to this variation to a greater extent than the core part, suggesting that processes such as AT-rich horizontal gene transfer may be involved. Secondly, base composition is modelled under Brownian motion and as an extension, the Ornstein- Uhlenbeck process, which allows for multiple optima throughout the tree. The model including optima fits the data better than standard Brownian motion or Brownian motion with multiple diffusion coefficients. Finally, I investigate a case where a previous codon usage analysis has been seriously confounded by an unusual genome architecture of abnormal regional base composition in two species of eukaryotic parasites in the genus Theileria. In both species, the background G+C content is 37% at most, out of the four syntenic chromosomes. In many orthologous regions however, T.annulata has a decreased G+C content of 28% while T.parva has an increased G+C content of 41%. Various factors coincide with this remarkable divergence: increased divergence at all types of site, recombination hot spots in T.parva, an increased frequency of tandem repeats and DNA sequence motifs in both species. The evolutionary origins of these unusual patterns will be discussed.

Page generated in 0.0811 seconds