• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 93
  • 27
  • 20
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 395
  • 121
  • 98
  • 92
  • 74
  • 65
  • 64
  • 45
  • 39
  • 32
  • 31
  • 27
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Crustal-scale Shear Zones Recording 400 m.y. of Tectonic Activity in the North Caribou Greenstone Belt, Western Superior Province of Canada

Kalbfleisch, Netasha 24 September 2012 (has links)
A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp’s prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate margin. Further, this study highlights the caution that should be exercised when using traditional rock forming metamorphic minerals (mica, chlorite, garnet) when attempting to vector into zones of hydrothermal alteration within midcrustal rocks.
212

The Decay Constant of 87Rb and A Combined U-Pb, Rb-Sr Chronology of Ordinary Chondrites

Rotenberg, Ethan David 02 March 2010 (has links)
The 87Rb-86Sr system is a widely used long-lived isotope geochronometer. 87Rb, the naturally occurring radioactive isotope of Rb, undergoes beta-decay to stable 87Sr with a half-life of approximately 50 Ga. Decay of 87Rb to 87Sr results in variable 87Sr/86Sr in minerals with different Rb/Sr, and measurement of 87Rb/86Sr and 87Sr/86Sr allows for the determination of the age of the rock. Accurate ages depend both on the quality of the isotopic analysis and on the accuracy of the 87Rb decay constant, lambda87. Although the currently accepted value for lambda87 of 1.42 × 10-11a-1 has been in use for over 30 years, there is growing evidence that it is not accurate. Recent attempts to refine lambda87 and its precision have not reached a consensus. This thesis describes a new experiment to measure lambda87 by 87Sr accumulation over a period of about 30 years, and the preparation of a 84-86Sr double-spike in conjunction with that experiment. Radiogenic 87Sr produced in aliquots of a RbClO4 salt was measured by isotope dilution thermal ionization mass spectrometry. An average of 31 measurements yields a value of 1.398 ± 0.003 × 10-11a-1 . This requires a substantial revision from the previously accepted decay constant and makes Rb-Sr ages calculated with it 1.5% older. A Rb-Sr and U-Pb isotopic chronometry study was carried out on thirteen ordinary chondrites – the most common type of meteorite, the origin and history of which are still unclear. Some meteorites appear disturbed, possibly by recent shock during breakup of the parent body, whereas others yielded accurate and precise U-Pb and Pb-Pb ages. For example, L5 Elenovka yielded distinct ages for silicates (4555 Ma) and phosphates (4535 Ma), allowing the cooling rate of this meteorite from approximately 1055 K to 759 K to be constrained to 15 ± 3 K/Ma. Rb-Sr yielded less precise ages than U-Pb, but using the new decay constant allows accurate comparison between the two methods. This study creates a firm foundation for future studies in thermal history of chondrites and terrestrial metamorphic complexes using Rb-Sr together with other isotopic chronometers.
213

The Decay Constant of 87Rb and A Combined U-Pb, Rb-Sr Chronology of Ordinary Chondrites

Rotenberg, Ethan David 02 March 2010 (has links)
The 87Rb-86Sr system is a widely used long-lived isotope geochronometer. 87Rb, the naturally occurring radioactive isotope of Rb, undergoes beta-decay to stable 87Sr with a half-life of approximately 50 Ga. Decay of 87Rb to 87Sr results in variable 87Sr/86Sr in minerals with different Rb/Sr, and measurement of 87Rb/86Sr and 87Sr/86Sr allows for the determination of the age of the rock. Accurate ages depend both on the quality of the isotopic analysis and on the accuracy of the 87Rb decay constant, lambda87. Although the currently accepted value for lambda87 of 1.42 × 10-11a-1 has been in use for over 30 years, there is growing evidence that it is not accurate. Recent attempts to refine lambda87 and its precision have not reached a consensus. This thesis describes a new experiment to measure lambda87 by 87Sr accumulation over a period of about 30 years, and the preparation of a 84-86Sr double-spike in conjunction with that experiment. Radiogenic 87Sr produced in aliquots of a RbClO4 salt was measured by isotope dilution thermal ionization mass spectrometry. An average of 31 measurements yields a value of 1.398 ± 0.003 × 10-11a-1 . This requires a substantial revision from the previously accepted decay constant and makes Rb-Sr ages calculated with it 1.5% older. A Rb-Sr and U-Pb isotopic chronometry study was carried out on thirteen ordinary chondrites – the most common type of meteorite, the origin and history of which are still unclear. Some meteorites appear disturbed, possibly by recent shock during breakup of the parent body, whereas others yielded accurate and precise U-Pb and Pb-Pb ages. For example, L5 Elenovka yielded distinct ages for silicates (4555 Ma) and phosphates (4535 Ma), allowing the cooling rate of this meteorite from approximately 1055 K to 759 K to be constrained to 15 ± 3 K/Ma. Rb-Sr yielded less precise ages than U-Pb, but using the new decay constant allows accurate comparison between the two methods. This study creates a firm foundation for future studies in thermal history of chondrites and terrestrial metamorphic complexes using Rb-Sr together with other isotopic chronometers.
214

Structural Geology and Geochronology of the Bernic Lake Area in the Bird River Greenstone Belt, Manitoba: Evidence for Syn-Deformational Emplacement of the Bernic Lake Pegmatite Group

Kremer, Paul January 2010 (has links)
The Bernic Lake Formation in the Bird River greenstone belt consists dominantly of mafic to felsic arc volcanic and volcaniclastic rocks, with varying amounts of mafic to felsic intrusive rocks, including the Bernic Lake pegmatite group. U-Pb geochronoligical analyses on selected samples around the Bernic Lake area, indicate that the Tanco gabbro, the Birse Lake granodiorite and the volcanic rocks of the Bernic Lake Formation are contemporaneous ca. 2724 Ma and form part of a singular volcanic and subvolcanic complex. The highly evolved, LCT-type, rare element-bearing Bernic Lake pegmatite group, including the world class Tanco pegmatite, was emplaced in the Bernic Lake Formation during a belt-scale tectonomagmatic event associated with G3 deformation between ca. 2650 and 2640 Ma. Early and rarely preserved isoclinal folding in the Bernic Lake Formation attributed to G1 deformation was followed north-south directed compression resulting in refolding and transposition of G1 structures by east-west trending upright F2 folds. Continued compression caused strain localization and south-side-up shearing along the North Bernic Lake Shear Zone (NBLSZ), which juxtaposes MORB-like basalt of the south panel to the south against arc rocks of the Bernic Lake Formation to the north. G3 deformation is characterized by a spaced S3 fracture cleavage that overprints the penetrative S2 fabric, and dextral reactivation of the NBLSZ. Pegmatitic melt ascended from depth along the reactivated NBLSZ during this time and was emplaced both within the shear zone and within rock units adjacent to it. The shapes and orientations of the pegmatites are controlled in part by the rheology of the host rocks into which they were emplaced. Rheologically competent lithologies responded to G3 strain by brittle fracture and the pegmatites occurring therein are flat and tabular; rheologically incompetent lithologies responded to G3 strain by ductile-brittle deformation and the pegmatites therein are irregular, folded, and/or boudinaged. The contrasting styles suggest that the pegmatites intruded while the rocks of the Bernic Lake Formation were at or near the brittle-ductile transition.
215

Climatic and Structural Controls on the Geomorphology of Wadi Sana, Highland Southern Yemen

Anderson, Joshua Michael 12 April 2007 (has links)
Middle Holocene climate change forced significant environmental response and influenced human activities throughout southern Arabia. Climate models and proxy data indicate that climate along the southern Arabian peninsula changed from a moist phase, spanning the early to middle Holocene, to an arid phase, which persisted for the last ca. 5,000 years. A weakening and southward shift of the Southwest Indian Monsoon System, forced by northern hemisphere insolation variations in the precession band and/or glacial boundary conditions, is suggested as the mechanism for the abrupt shift to more arid conditions. Geoarchaeological evidence suggests that agriculture was more widespread and evolved alongside the development of irrigation technologies during a period when rainfall was more plentiful than today. Here we investigate the surficial record of the dynamic fluvial response to the late Quaternary climate shift and reconstruct the geochronology of the geomorphic evolution of a significant portion of the ca. 125 km length of Wadi Sana, a north-flowing tributary to the Wadi Hadramout system. Using differential-corrected GPS-based survey, combined with analysis of the sedimentary record, the RASA (Roots of Agriculture in Southern Arabia) Project has created a paleohydrologic reconstruction of Wadi Sana in order to provide a context for understanding how fluvial landscapes, hydrologic regime, and human activity reacted to ivchanging middle Holocene climate. Radiocarbon and luminescence dating of remnant silt terraces suggests that fine-grained sediment began accumulating on an older (late-Pleistocene) coarse cobble surface between 12,000-7,000 years ago and continued aggrading until about 5,000 years ago. Paralleling the climate shift, Wadi Sana began incising and eroding the thick sediment infilling about 4,500 years ago, which has continued to the present time. Field reconnaissance and map analysis reveals structural and lithologic controls on the source and availability of these fluvial sediments for downstream deposition during the late Pleistocene and Holocene. Hydrologic modeling of active present-day channels within Wadi Sana estimates stream velocities at 2.2 m/s and stream discharges of 444 m3/s. We propose that a change in hydrologic regime, driven by the monsoon shift, is the cause of the middle Holocene channel adjustment from an aggradational to incising mode in Wadi Sana.
216

Unrecognized complexities of metamorphism : crystallization kinetics, reaction affinity, and geochronology

Kelly, Eric David 27 January 2012 (has links)
Unrecognized metamorphic complexities can produce erroneous interpretations when using equilibrium thermodynamics and isotope geochronology. Universally employed methods for determining pressure-temperature conditions during regional metamorphism are based on the assumption of chemical equilibrium, and geochronology in metamorphic rocks can suffer from cryptic redistribution of isotopes. In this research, the scales of disequilibrium in regionally metamorphosed rocks and the effects of garnet resorption on Lu-Hf garnet ages were examined through numerical simulations of these processes. Concerning scales of disequilibrium, thirteen porphyroblastic datasets, previously measured using X-ray computed tomography, were examined by numerically simulating diffusion-controlled nucleation and growth of garnet while tracking chemical potential gradients to determine reaction affinity Ar (-[Delta]rG). Maximum nucleation rates are 10⁻¹³̇⁶-10⁻⁹̇⁸ nuclei cm⁻³ s⁻¹, interfacial energies are 0.004-0.14 J m⁻² assuming shape factors of 0.1-1.0, and Al intergranular diffusion (QD = 140 kJ/mol⁻¹) is 10⁻¹⁴̇⁴-10⁻¹¹̇¹ m² s⁻¹ at 600 °C. Limitations in determining crystallization kinetics arise from difficulties in constraining rock-specific properties (e.g., porosity and Al solubility). Ar at the time and location of nucleation is 0.4-5.9 kJ/mol⁻¹ of 12-oxygen garnet ([Delta]T = 4.0-62.0 °C) for the earliest nuclei, and 5.3-29.0 kJ/mol⁻¹ ([Delta]T = 50-125 °C) for nucleation at maximum Ar. The results demonstrate potential for delayed nucleation and metastability that can generate spurious interpretations. The timing of metamorphic events is also critical for understanding geologic history. In the Makhavinekh Lake Pluton aureole, Labrador, garnet resorption caused redistribution of Lu and loss of Hf from consumed rims, creating spuriously young ages. Garnet-ilmenite Lu-Hf geochronology using bulk separates yields apparent ages that young toward the contact from 1876 ± 21 Ma (4025 m) to 1396 ± 8 Ma (450 m). Toward the contact, garnet crystals are progressively more resorbed. Numerical modeling was used to test retention of Lu and loss of Hf during resorption as the dominant control on age. More resorption and Lu retention produce younger apparent ages (false ages). Application of the model to the aureole yields model ages from 1850 Ma to 1374 Ma, younging toward the contact. Thus, Lu-Hf geochronology applied to resorbed garnets requires careful examination of Lu zoning. / text
217

The Nature of Continental Rocks During Collisional Orogenesis and Tectonic Implications: Tibet

Pullen, Alexander January 2010 (has links)
This dissertation research addresses the tectonism of continental crust during ocean basin closure, suturing between continental landmasses, and collisional orogenesis. The new data and insights presented here were gathered through localized geologic investigations of the Tibetan Plateau of central Asia. This area of central Asia is an ideal location to study these fundamental tectonic processes because it has been the locus of numerous Tethyan ocean basins and terminal collisions between continents during Phanerozoic accretion of Gondwana-derived landmasses onto the southern margin of Eurasia. In this work, I propose, in many orogens, that high-pressure (HP) metamorphism of continental rocks may mark the early stages of the suturing process between continental landmasses rather than the culmination of suturing. This insight has been acquired from a geologic-, geochronologic-, and thermochronologic-based investigation of the HP-near ultrahigh-pressure bearing Triassic metasedimentary metamorphic belt in central Tibet. This work shows near synchronous continent-continent collisions between landmass adjacent to the Paleo-Tethys ocean prior to its final closure in Late Triassic time. In addition, this work shows that Mediterranean-style tectonics may be more widespread during accretionary tectonics than previously thought. A comparison between the distribution of the HP bearing metamorphic belt, autochthonous crystalline basement, and geophysical images of Tibet suggests that a Mesozoic tectonic feature may be controlling the structure and distribution of melt within the middle crust of the Tibetan Plateau. This concept underscores the importance of inherited tectonic frameworks on the evolution of orogenic plateaus. Work in southwest Tibet, along the India-Asia suture zone, highlights the complex behavior of continental crust during collisional orogenesis. This work identifies previously undocumented magmatism, crustal antexis, and high-grade metamorphism along the India-Asia suture. In this work I attribute these observations to the initial interactions between Indian, Asian, and subducting Neo-Tethys oceanic lithosphere.
218

Uranium-Lead, Argon-Argon, and Lead Isotopic Constraints of Magmatism and Associated Mineralization within the Stikine Terrane, on the Williams Gold Property, North Central British Columbia

Bayliss, Sandra M. 23 July 2008 (has links)
Stikinia is a tectonostratigraphic terrane in the Canadian Cordillera comprised of the Early Permian Asitka Group, the Late Triassic Stuhini Group and the Early to Middle Jurassic Hazelton Group. William’s Gold property which coincides with the study area is located on the east-northeast margin of the Stikine terrane within a fault mosaic of Devonian to Permian Asitka Group carbonates and volcanic and sedimentary rocks of the Stuhini Group. The primary purpose of this study is to determine the timing of mineralization and the absolute ages of the intrusions within the Williams west region of the William’s Gold property. This study attempts to correlate mesothermal gold veining and Cu-Au porphyry style mineralization from the study area with mineralization that has occurred approximately 100km southeast at Kemess Mine. U-Pb, Ar-Ar geochronology and Pb isotopic studies were used to determine the ages and isotopic signatures of rocks located within the study area. Four samples of quartz monzonite and one sample of a feldspar porphyry gave U-Pb crystallization ages ranging from 221.4 to 183.6 Ma. Two samples G090062, and G090063 contained cores that cluster between 230 and 260 Ma and 330 and 380 Ma. The oldest gave an age of 420Ma. The presence of older cores suggests that the intrusion passed through older basement rocks, possibly the Paleozic Stikine Assemblage. A sample of alteration sericite from the T-bill prospect that is believed to occur syn-mineralization was dated using the Ar-Ar method and returned an inverse isochron age of 194.6 +/-3.5 Ma. The age of the sericite alteration did not correspond to the ages of the five intrusive units analyzed during this study. This suggests that the mineralization at the T-bill prospect was likely not genetically related to any of the intrusions dated in this study.
219

Structural Geology and Geochronology of the Bernic Lake Area in the Bird River Greenstone Belt, Manitoba: Evidence for Syn-Deformational Emplacement of the Bernic Lake Pegmatite Group

Kremer, Paul January 2010 (has links)
The Bernic Lake Formation in the Bird River greenstone belt consists dominantly of mafic to felsic arc volcanic and volcaniclastic rocks, with varying amounts of mafic to felsic intrusive rocks, including the Bernic Lake pegmatite group. U-Pb geochronoligical analyses on selected samples around the Bernic Lake area, indicate that the Tanco gabbro, the Birse Lake granodiorite and the volcanic rocks of the Bernic Lake Formation are contemporaneous ca. 2724 Ma and form part of a singular volcanic and subvolcanic complex. The highly evolved, LCT-type, rare element-bearing Bernic Lake pegmatite group, including the world class Tanco pegmatite, was emplaced in the Bernic Lake Formation during a belt-scale tectonomagmatic event associated with G3 deformation between ca. 2650 and 2640 Ma. Early and rarely preserved isoclinal folding in the Bernic Lake Formation attributed to G1 deformation was followed north-south directed compression resulting in refolding and transposition of G1 structures by east-west trending upright F2 folds. Continued compression caused strain localization and south-side-up shearing along the North Bernic Lake Shear Zone (NBLSZ), which juxtaposes MORB-like basalt of the south panel to the south against arc rocks of the Bernic Lake Formation to the north. G3 deformation is characterized by a spaced S3 fracture cleavage that overprints the penetrative S2 fabric, and dextral reactivation of the NBLSZ. Pegmatitic melt ascended from depth along the reactivated NBLSZ during this time and was emplaced both within the shear zone and within rock units adjacent to it. The shapes and orientations of the pegmatites are controlled in part by the rheology of the host rocks into which they were emplaced. Rheologically competent lithologies responded to G3 strain by brittle fracture and the pegmatites occurring therein are flat and tabular; rheologically incompetent lithologies responded to G3 strain by ductile-brittle deformation and the pegmatites therein are irregular, folded, and/or boudinaged. The contrasting styles suggest that the pegmatites intruded while the rocks of the Bernic Lake Formation were at or near the brittle-ductile transition.
220

TECTONOMETAMORPHIC EVOLUTION OF THE KIOSK DOMAIN, CENTRAL GNEISS BELT, GRENVILLE PROVINCE, ONTARIO: CONSTRAINTS FROM GEOCHRONOLOGY AND THERMOBAROMETRY

Foster, John Gordon Joseph 20 July 2012 (has links)
The Kiosk domain in the Central Gneiss Belt, southwestern Grenville Province, Ontario comprises ca.1655 Ma orthogneisses and volumetrically minor ca. 1480-1460 Ma parag- neisses that were affected by granulite-facies metamorphism between ca. 1480 and ca. 1000 Ma. The objectives of this study are: (i) to determine the protolith ages from the Kiosk domain and the underlying southern Bonfield Batholith; (ii) to determine the tim- ing of major tectonic episodes; (iii) to determine the pressure-temperature conditions of peak metamorphism; and (iv) to use these data to constrain the position of the Allochthon Boundary Thrust in the southwestern Grenville Province.

Page generated in 0.0743 seconds