• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 93
  • 27
  • 20
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 395
  • 121
  • 98
  • 92
  • 74
  • 65
  • 64
  • 45
  • 39
  • 32
  • 31
  • 27
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Provenance-related studies of Triassic-Miocene Tethyan sedimentary and igneous rocks from Cyprus

Chen, Guohui January 2018 (has links)
Cyprus comprises three tectono-stratigraphic terranes: first, the Troodos Massif made up of Late Cretaceous oceanic lithosphere and its sedimentary cover in the centre of the island; secondly, the Mamonia Complex (and Moni Melange) a passive margin lithological assemblage in the west (and south) and thirdly, the Kyrenia Range, an active margin lithological assemblage in the north. This study focuses on the sedimentary cover of the Troodos Ophiolite in W Cyprus, the Triassic-Cretaceous sedimentary rocks of the Mamonia Complex and Late Cretaceous-Miocene igneous and sedimentary rocks in the Kyrenia Range, mainly based on combined sedimentology, geochemistry and geochronological dating. The Late Triassic-Early Cretaceous Mamonia Complex, SW Cyprus (and the Moni Melange, S Cyprus) represent parts of the emplaced passive continental margin of the S Neotethys. Late Triassic sandstones are characterised by a predominantly felsic source, with a subordinate mafic contribution. Jurassic-Early Cretaceous sandstones have a polycyclic felsic origin. Geochemical analyses are suggestive of progressive weathering and sediment recycling/sorting. The dominance of Ediacaran-Cryogenian and Tonian-Stenian-aged detrital zircon populations is suggestive of an ultimate north Gondwana source, probably recycled from Palaeozoic siliciclastic sedimentary rocks within Anatolia to the north. Similar detrital zircon populations characterise Early Cretaceous deltaic sandstone of the Moni Melange, S Cyprus. Sporadic Late Cretaceous subduction-related magmatism, represented by a Campanian volcaniclastic sequence (80.44±1.0 Ma) inWCyprus and a Late Campanian felsic volcanogenic sequence (72.9±1.0 Ma) in N Cyprus, represents early and more advanced stages of northward subduction during closure of the S Neotethys. Specifically, the Kannaviou Formation in W Cyprus (up to 750 m thick) is made up of deep-marine volcaniclastic sandstones that were mostly deposited by gravity flows and as air-fall tuff, interbedded with clay and radiolarian mudstones. Petrographic and geochemical analyses are indicative of a volcanic arc source, with deposition in a fore-arc basin. Petrographic evidence of terrigenous input (e.g. muscovite, muscovite schist, polycrystalline quartz) points to a subordinate continental source. Mineral chemistry is consistent with a volcanic arc origin. Elevated trace-element ratios in undevitrified volcanic glass (e.g. Th/Nb, Th/La) are indicative of involvement of continental crust or subducted terrigenous sediments in source-arc melting. Felsic volcanogenic rocks (Fourkovouno (Selvilitepe) Formation) in the Kyrenia Range, N Cyprus, occur as an up to 400 m-thick sequence of felsic tuffs, felsic debris-flowdeposits and rhyolitic lava flows. Geochemical analyses are indicative of evolved high-K and shoshonitic compositions, similar to those of the Andean active continental margin. Subduction continued to affect the northern continental margin of the S Neotethys in the Kyrenia Range during the Maastrichtian. This lead to the accumulation of Late Cretaceous sandstone turbidites and related basaltic volcanics, possibly in a back-arc setting. The volcanism took place in two phases (Late Cretaceous and Palaeogene-Early Eocene) during pelagic carbonate accumulation. These lavas have within-plate affinities, but with a variable subduction influence in some areas (e.g. western Kyrenia Range), which may be contemporaneous or inherited from previous subduction. The sedimentary sequences in the Kyrenia Range, N Cyprus, document diachronous closure of the S Neotethys. Late Cretaceous and Eocene sandstone turbidites, and the lower part of the overlying Oligocene-Miocene succession exhibit enrichment in ultramafic components that was probably sourced from ophiolite-related rocks in the Taurides to the north. In contrast, Miocene sandstone turbidites higher in the sequence show an increasing input of continent-derived siliciclastic material (and sorting effects). The terrigenous-influenced sediments are likely to represent erosion of thrust sheets that were emplaced from the S Neotethys onto the Arabian foreland in SE Turkey related to continental collision. Ediacaran-Cryogenian and Tonian-Stenian-aged zircons dominate the Late Cretaceous and Eocene sandstone turbidites, consistent with derivation from the Tauride micro-continent to the north and/or NE. Overlying Miocene sandstones include minor populations of Neoproterozoic-aged zircons, suggestive of reworking from source rocks of ultimately Gondwanan origin (e.g. NE Africa/Arabian-Nubian Shield). In summary, the thesis results exemplify the interaction of tectonic processes associated with the evolution of the S Neotethys Ocean. This began in the area studied with passive margin development (Triassic-Cretaceous), and was followed by multi-stage subduction-related volcanism and sedimentation (Late Cretaceous-Miocene). Final closure of the S Neotethys in this area took place during the Late Miocene-Recent.
202

Late Palaeozoic to Early Mesozoic evolution of the Palaeotethys in Turkey: Insights from the Karaburun Peninsula and the Konya Complex

Löwen, Kersten 15 November 2018 (has links)
No description available.
203

High-resolution sequence stratigraphy and detrital zircon provenance of the Ordovician Ancell Group in the Iowa and Illinois Basins: insight into the evolution of midcontinental intracratonic basins of North America

Ibrahim, Diar Mohammed 01 May 2016 (has links)
The Middle Ordovician Ancell Group, including the St. Peter Sandstone, Glenwood Shale and Starved Rock Formation, records intracontinental basin development during eustatic sea level changes in Iowa and Illinois. The St. Peter Sandstone overlies the Prairie du Chien Group across an erosional unconformity that marks a major sequence boundary, whereas upper contact of the St. Peter Sandstone with the Glenwood Shale also is a second sequence boundary. Data from 80 wells, selected well logs, and 20 cores were integrated to refine the high-resolution sequence stratigraphy of the Ancell Group. Two main sequences bounded by three sequence boundaries are interpreted to represent 3rd order sequences. Distinctive shallowing-upward parasequences bounded by flooding surfaces in many cores record higher frequency relative sea level fluctuations in the Ancell Group, but these cannot presently be correlated regionally. Facies variations define an aggradational transgressive systems tract TST), a prograding highstand systems tract (HST) and down stepping falling stage system tract (FSST) in both the St. Peter Sandstone and the Glenwood Shale-Starved Rock Formation units. The St. Peter Sandstone thickens towards the northeast and thins to the northwest and southwest in Iowa. In contrast, the St. Peter Sandstone in Illinois thickens to the south likely recording a prolonged FSST incised valley or channel fill. Detrital zircon geochronology of 13 samples from the St. Peter Sandstone and Starved Rock Formation define common peaks at 1100-1500 Ma and 2500-2700 Ma with minor components at 1670-1750 Ma and 3000-3600 Ma. The detrital zircon signature is dominated by Archean, and Grenville (1000-1300 Ma) ages. The detrital zircon geochronology indicates that the Ancell Group was sourced directly from the Archean Superior Province to the north and Grenville Province to the northeast, although recycling of Archean grains from the Paleoproterozoic Huron Basin cannot be ruled out. The near complete lack of 1800-1900 Ma ages argues against derivation of detritus from the Trans-Hudson or Penokean Orogens. The Transcontinental Arch northwest of the Iowa Basin acted as a barrier to sediment transport from the Trans-Hudson Orogen. Basement rocks of the Penokean Orogen are inferred to have been covered by water or younger sediments southeast of the Iowa Basin. CIA analyses of Ordovician shale samples from around the Transcontinental Arch indicate that the climate condition during Middle Ordovician time was warm and humid. This is consistent with a paleoclimate interpretation where mechanical erosion and chemical weathering yielded first cycle mature quartz arenites (Witzke, 1980).
204

GEOCHRONOLOGICAL AND GEOCHEMICAL CONSTRAINTS ON THE ORIGIN OF THE CARTOOGECHAYE TERRANE, WESTERN NORTH CAROLINA: IMPLICATIONS FOR THE LATE PRECAMBRIAN TO EARLY PALEOZOIC EVOLUTION OF THE EASTERN LAURENTIAN MARGIN

Walsh, Kevin B., Jr. 01 January 2018 (has links)
The Cartoogechaye terrane (CT) is an enigmatic migmatite terrane within the Central Blue Ridge province of the southern Appalachians. Previous work identified exotic Pb isotope compositions within the CT (Quinn, 2012). More recent studies that mapped the extent of potentially exotic metaigneous lithologies yield U-Pb zircon ages consistent with a native Laurentian margin metasedimentary origin (Larkin, 2016). This study focused on the possible extent of similar lithologies in the Clyde quadrangle and provides further constraints on the crustal affinity of the CT. The Clyde quadrangle consists of four distinct lithologic packages: the CT, Ashe metamorphic suite, Great Smoky Group, and Grenville basement. Five samples within the Clyde quadrangle and one sample from Wayah Bald quadrangle were collected for detrital zircon (DZ) U-Pb geochronology and whole rock geochemistry for comparison similar anlayses from other bedrock units in the region. Dominant DZ age modes consist of the Grenville doublet (1050 Ma and 1150 Ma) or a modified version of it. Minor age modes exist at ~450 Ma, 600-750 Ma, and 1300-1550 Ma. Zircons for all but one sample display heterogeneous external and internal cathodoluminescence morphologies, consistent with a sedimentary protolith for the paragneisses. Whole rock compositions are consistent with weathering of and derivation from a local basement source. U-Pb age data are most consistent with an eastern Laurentian sedimentary provenance for five samples. The presence of 450-460 Ma grains is most consistent with high-grade Taconian regional metamorphism. The lack of a major Shawinigan age mode and zircon morphology for ca. 980-1050 Ma metamorphic zircons indicate that sample CLY16-1 is a syn-orogenic metasediment within the Grenville basement underlying the CT.
205

Geochronological Constraints On The Timing Of Deformation: An Examination Of The Prospect Rock Fault Footwall In North-Central Vermont

Tam, Evan 01 January 2018 (has links)
The Prospect Rock Fault (PRF) is key to our understanding of the regional tectonic evolution of Vermont during the Taconic, Salinic, and Acadian Orogenies, and may have played an important role in the exhumation of blueschist and eclogite-facies rocks in the Tillotson Peak Complex (TPC) during the Taconic Orogeny. The TPC is in the footwall of the PRF in the eastern limb of the Green Mountain Anticlinorium. In the TPC, the dominant foliation is S2 and E-W trending F2 folds parallel L2 stretching lineations, which trend orthogonal to regional N-S trending folds associated with the Taconic Orogeny. The PRF itself is folded by F2 folds. Presently, there is a lack of consensus about the role of the PRF in the exhumation of the TPC, and studies have not reconciled the formation of the E-W folds and lineations to a regional model. Oriented samples and structural data were collected from the footwall of the PRF over several transects. Samples were processed into orthogonal thin sections for microstructural analyses and for 40Ar/39Ar step heating of white mica. The dominant foliations in the PRF samples were identified through microstructural analysis and correlating the age of deformation as S2 and S3. These were defined in thin section by mica and quartz microlithons, and oriented mica grains. S1, and in some samples S2, are locally preserved in some mica domains and albite/garnet inclusion trails. S4 appears as crenulations of S3, with no significant new mineral crystallization. In the field, L2 and L3 lineations are defined by mineral and quartz rods, and L4 lineations are defined as intersection lineations on S2 surfaces. 40Ar/39Ar analyses yielded plateau ages ranging from 458.6 ± 2.0 Ma to 419.0 ± 2.4 Ma (1σ). The oldest plateau ages are just slightly younger, yet concordant, with published and new 40Ar/39Ar ages from the TPC and come from the structurally highest portions of the footwall in the northern part of the study area. Virtually all apparent age spectra show age gradients. Results from this study suggest the PRF played a role in exhumation of the TPC and ages obtained are closely aligned with deformation ages constrained from 40Ar/39Ar dating in southern Quebec for the Taconic D2 and Salinian D3 deformation. These dates may aid correlatation of ages and structures regionally and further refining of tectonostratigraphic models describing southern Quebec and New England.
206

Forearc basin detrital zircon provenance of Mesozoic terrane accretion and translation, Talkeetna Mountains-Matanuska Valley, south-central Alaska

Reid, Mattie Morgan 01 May 2017 (has links)
The Wrangellia composite terrane is one of the largest fragments of juvenile crust added to the North American continent since Mesozoic time, and refining its accretionary history has important implications for understanding how continents grow. New U-Pb geochronology and Hf isotopes of detrital zircons from Late Jurassic-Late Cretaceous strata from the forearc of the Wrangellia composite terrane allows more insight on the tectonic and paleogeographic history of the terrane. Our stratigraphically oldest samples from the Late Jurassic Naknek Formation have a detrital zircon U-Pb signature dominated by Early and Late Jurassic grains (195-190 Ma; 153-147 Ma). Hf isotopic compositions of these grains are juvenile to intermediate (εHf(t)=4.5-14.7). Disconformably above the Naknek Formation are two poorly understood units Ks and Kc. The Ks unit is dominated by Early to Late Jurassic grains (159-154 Ma) with a few Paleozoic grains (347-340 Ma). Hf isotopic compositions of Carboniferous-Jurassic grains are juvenile to intermediate (εHf(t)=6.0-18.8). The overlying Kc unit has Late to Early Jurassic zircons (198-161 Ma), and an increase in Paleozoic ages (374-323 Ma). Hf isotopic compositions of these grains are juvenile to intermediate (εHf(t)=4.5-14.7). Samples from the Matanuska Formation have major Late Cretaceous grains (90-71 Ma), and minor Early Cretaceous (137-106 Ma), Late to Early Jurassic (200-153 Ma), Paleozoic (367-277 Ma), and Precambrian grains (2597-1037 Ma). Hf compositions have a wider range from both the Late Cretaceous grains (εHf(t)=-1.5-14.9) and Paleozoic-Precambrian grains (εHf(t)=-23.7-16.3). Our results suggest an evolving provenance from Late Jurassic to Late Cretaceous time for the Wrangellia composite terrane forearc basin. The Late Jurassic Naknek Formation samples were dominantly derived from a juvenile to intermediate Jurassic igneous sediment source. During Early Cretaceous time, there is a slight increase in the number of Paleozoic grains in the Ks and Kc unit samples. The Early Cretaceous sediments have a mostly positive Hf isotopic compositions suggesting exhumation of Jurassic and Paleozoic juvenile igneous sediment sources. By Late Cretaceous time, our data illustrates another increase in Paleozoic grain abundances, in addition to the introduction of Precambrian grains, all with widely variable Hf isotopic compositions. We interpret this to reflect a larger sediment flux from the interior of Alaska where more evolved igneous rocks of that age are found.
207

Insights for provenance analysis of modern watersheds from detrital apatite and detrital zircon U-PB geochronology- Talkeetna Mountains, southcentral Alaska

Ames, Carsyn Jean 01 May 2018 (has links)
Detrital zircon U-Pb geochronology is a useful tool for analyzing provenance in the sedimentary record. Differentiating recycled and first cycle populations in the detrital record, however, is not a straightforward process. A second potential problem in using detrital signatures to determine provenance of sediment lies in the assumption that detrital signatures of modern rivers reflect input from each exposed unit in the catchment boundaries. To investigate each of these problems, I present U-Pb analysis of detrital zircon (DZ) from modern river sand collected from 20 watersheds, 6 detrital apatite (DA) signatures from modern river sand, and 6 DA signatures from exposed strata, all within the Talkeetna Mountains (south-central Alaska). DA rarely survives past the first cycle of erosion and deposition due to its inability to survive chemical weathering, and thus dominantly represent igneous input in detrital signatures, whereas zircon can be of igneous origin or can survive multiple cycles of erosion and deposition. By comparing the DA signatures with the DZ signatures, I present a method to better differentiate first cycle, igneous sediment contributions from recycled populations within a detrital signature. The results of these comparisons show that DA signatures provide ages of igneous input into the detrital record; these ages are also reflected in the DZ signature, thus signaling these DZ populations as igneous in origin. This study also investigates the potential for DA recycling and DA input from recycled strata. To address the second problem, I present a method using GIS software and the most recent map of Alaska to create simulated signatures that records input on a scale proportionate to the exposed surface area of each bedrock unit. In ~35% of the watersheds tested, the simulated signatures predict trends similar to the DZ signatures from the modern river sands, in 55% of the watersheds tested the simulated signatures missed one or more populations present in the DZ signature, and in 10% of watersheds tested, the simulated signature predicted trends very different from the DZ signatures. In cases where the DZ and simulated signatures do not match, I believe this represents influences of climate and relief and zircon fertility.
208

Construction of a Late Pleistocene Paleothermometer Based on Amino Acid Racemization in Fossil <em>Succinea</em> Shells

Walther, Richard Ayres 11 September 2004 (has links)
Racemization kinetics of amino acids, determined for the commonly occurring fossil gastropod Succinea, facilitates the ability to construct an accurate and precise paleothermometer to estimate paleotemperatures over specific time intervals during the last 150,000 years in parts of Central Europe. Racemization within the carbonate shell of Succcinea is induced at high temperatures over increasing intervals of time in the laboratory and measured for aspartic acid (asp), glutamic acid (glu), valine (val), and phenylalanine (phe), by reverse-phase liquid chromatography. The activation energy (Ea), frequency factor (A), and forward rate constant (k1) of the Arrhenius equation are determined from the racemization of specific amino acids over time. The Arrhenius parameters, combined with racemization data and independent age estimates of fossil Succinea shells, are used to solve for temperature in geologic samples. Succinea recovered from a loess sequence in western Germany, located around the town of Nussloch, has been chosen for amino acid paleothermometry calculations. Samples were collected from the Nussloch loess -- paleosol sequence in the summer of 2001. The sequence spans from greater than 130,000 years to the present, is dated by luminescence and radiocarbon methods, and has abundant published proxy paleoclimate data for comparison. Temperatures calculated for the bracketed time interval representing the last glacial maximum (25 - 20ka) averaged -5.3°C± 6.8°C using aspartic acid racemization data. Arrhenius parameters for aspartic acid racemization were the best constrained and provide temperature estimates consistent with previously published data. Paleotemperatures calculated for other bracketed intervals of time within the Succinea shells from Nussloch dated within the last 150,000 years exhibited values similar to previously published data with acceptable error.
209

Geocronologia e caracterização elementar (U, 226Ra, 210Pb, Mn, Mo, Ni e Zn) de perfis sedimentares do Planalto de Poços de Caldas - MG / Geochronology and elemental characterization (U, 226Ra, 210Pb, Mn, Mo, Ni and Zn) of sediment profiles of Poços de Caldas Plateau - MG

Almeida, Heleine Cardoso de 28 June 2019 (has links)
O Planalto de Poços de Caldas, localizado a sudoeste de Minas Gerais, é exemplo da maior intrusão alcalina ocorrida no Brasil, formada por processos de vulcanismo e intemperismo, ocorridos há cerca de 60-80 milhões de anos. Estes processos foram responsáveis pela formação de mineralizações de zircônio e molibdênio e diversas anomalias radioativas. Mais recentemente, a presença na região de várias fontes antrópicas, dentre elas o beneficiamento de urânio da Indústrias Nucleares Brasileiras Caldas, contribuíram para a inserção de vários elementos nos corpos d\'água da bacia do Ribeirão das Antas. O objetivo principal deste estudo foi fazer uso de perfis sedimentares e taxas de sedimentação para reconstituir historicamente a inserção de radionuclídeos e possíveis contaminantes na represa Bortolan e Poço Fundo ao longo dos anos. Nesses perfis foram determinados os teores dos radionuclídeos naturais U, 226Ra e 210Pb e dos elementos Mn, Mo, Ni, Zn e P por meio das técnicas de espectrometria gama, espectrometria de emissão atômica por plasma acoplado indutivamente (ICP- AES) e espectrofotometria. A taxa de sedimentação e a idade dos perfis foram avaliadas utilizando-se o modelo Constant Rate of Supply. Verificou-se que a utilização do modelo Constant Rate of Supply para a determinação das idades dos perfis forneceu resultados satisfatórios e da mesma ordem da grandeza das idades reais das represas Bortolan e Poço Fundo, 60 anos e 67 anos, respectivamente. Os valores obtidos para a taxa de sedimentação foram maiores para a represa Bortolan, devido ao assoreamento da represa, à urbanização e ocupação extensiva do solo para fins agrícolas e industriais. Analisando os resultados obtidos para a concentração dos elementos U, 226Ra, 210Pb, Mn, Mo, Ni, P e Zn, pode-se afirmar que os elementos que apresentaram contribuições antrópicas na represa Bortolan são o Mn, P e Zn. As maiores concentrações obtidas foram encontradas nas secções superficiais, indicando que o maior aporte ocorreu mais recentemente, a partir do ano de 1997. Os resultados obtidos para U e Ni não variaram ao longo dos perfis e são da mesma ordem de grandeza de dados da literatura para a mesma represa, indicando que esses valores podem ser considerados como níveis basais da região. Em particular, os resultados de concentração de U para a represa Bortolan foram elevados, visto que a região do planalto de Poços de Caldas é caracterizada por ser uma anomalia radioativa. O Mo não apresentou variação significativa ao longo dos perfis da represa Bortolan e sua concentração média também é da mesma ordem de grandeza do valor médio mundial para solo. Portanto, para esse elemento não foi verificado um aporte antrópico. Para os resultados de concentração dos elementos analisados no perfil da represa de Poço Fundo, pode-se afirmar que todos são próximos das concentrações médias mundiais e inferiores aos resultados obtidos na represa Bortolan. / The Poços de Caldas Plateau, located in the southwest of Minas Gerais, is the greatest intrusion that occurred in Brazil, formed by processes of volcanism and weathering, which occurred about 60-80 million years ago. These processes were responsible by the formation of zirconium and molybdenum mineralizations and various radioactive anomalies. More recently, the presence in the region of several anthropogenic sources, amongst them, the uranium mining from Industrias Nucleares Brasileiras - Caldas, contributed to the entry of several natural radionuclides in the water bodies of Ribeirão das Antas. The aim of this study was to use sediment profiles and sedimentation rates to reconstruct the insertion of radionuclides and possible contaminants in the Bortolan and Poço Fundo dams over the years. In these profiles, the concentration of the natural radionuclides U, 226Ra and 210Pb, and the Mn, Mo, Ni, Zn and P elements were determined by Gamma Spectrometry, Inductively Coupled Plasma - Atomic Emission Spectrometry and Spectrophotometry. The sedimentation rate and age of the profiles were evaluated using the Constant Rate of Supply. model. It was verified that the use of the Constant Rate of Supply. model to determine the ages of the sediment profiles gave satisfactory results, of the same order of magnitude of the real ages of the Bortolan and Poço Fundo dams, 60 years and 67 years, respectively. The values obtained for the sedimentation rate were higher for the Bortolan dam, due to silting of the dam, urbanization and extensive land occupation for agricultural and industrial activities. The results obtained for the concentration of the analyzed elements showed that Mn, P and Zn presented anthropogenic contributions in the Bortolan dam. The highest concentrations obtained were found in the superficial sections, indicating that the largest contribution occurred more recently, from the year of 1997 until now. The results obtained for U and Ni did not vary along the profiles and are of the same order of magnitude of literature data for sediments of Bortolan dam, indicating that these values can be considered as the base line for the region. In particular, the results of U concentration for the sediments of Bortolan dam were higher than natural background, since the region of Poços de Caldas plateau is characterized by a radioactive anomaly. The Mo did not present significant variation along the profiles of the Bortolan dam and its average concentration is also of the same order of magnitude of the world average value for soil. Therefore, for this element an anthropogenic contribution was not verified. The results obtained for the concentration of the elements analyzed in the Poço Fundo dam profile are of the same order of magnitude as the world average value for soil and lower than the results obtained in the Bortolan dam sediment profile.
210

Geological Evolution of the Supracrustal Palaeoproterozoic Hamrånge Group: A Svecofennian Case Study

Ogenhall, Erik January 2010 (has links)
The work presented in this thesis utilizes several geological methods to investigate the origin and evolution of the supracrustal rocks in the Palaeoproterozoic Hamrånge Group (HG) in the south-central Swedish Svecofennian. The first paper is based on whole-rock geochemistry to show the plate tectonic setting of volcanic rocks within the HG. This indicates that the environment was probably an oceanic volcanic arc. Geochronology, used in paper two, shows that the volcanism was active at 1888±6 Ma and that the sediments forming the stratigraphically overlying quartzite were deposited after 1855±10 Ma, with provenance ages overlapping both the volcanic rocks and the 1.86-1.84 Ga continental margin Ljusdal granitoids. In the third paper, thermobarometry was applied to samples from the HG, the migmatitic Ockelbo sub-domain to the south, and the 1.81 Ga Hagsta Gneiss Zone (HGZ) that separate these two units. The results show distinct differences in the metamorphic conditions that have affected the HG and the Ockelbo sub-domain, supporting previous interpretations that the HGZ is an important crustal structure, possibly a terrane or domain boundary. Paper four deals with the structural geology of the Hamrånge area. The study shows that the volcanic rocks and the underlying mica schist have been subjected to three deformation episodes (D1-D3), while the uppermost quartzite was most likely only affected by D2 and D3. While structures related to D1 are rarely seen, D2 resulted in a penetrative foliation, strong lineations and NW-vergent folding and thrusting. D3 is a result of a N-S compression that formed regional E-W folds and steep, ca. NW-SE shear zones, e.g. the HGZ. The results presented in this thesis, integrated with previously published data, outline a model for the geological evolution of the Hamrånge area: At 1.89 Ga a volcanic arc formed that subsequently collided with a continental margin resulting in the first deformation episode, D1, and probably a metamorphic event. This was possibly followed by an extensional period, after 1855±10 Ma, forming a basin that accumulated sediments later to form the quartzite stratigraphically on top of the volcanic rocks. The second deformation episode, D2, formed a fold-thrust belt when the supracrustal HG was thrusted to the NW, on top of the 1.86-1-84 Ga Ljusdal Domain. Flattening and a second metamorphic period followed this thickening of the crust. The last ductile deformation, D3, caused by regional tectonic forces, resulted in F3-folds that matured into ca. 1.8 Ga large-scale, steep shear zones transecting the Fennoscandian Shield.

Page generated in 0.0516 seconds