• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 52
  • 44
  • 32
  • 32
  • 32
  • 32
  • 32
  • 32
  • 24
  • 6
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 346
  • 346
  • 57
  • 43
  • 40
  • 38
  • 38
  • 33
  • 29
  • 29
  • 29
  • 27
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

The role of the deep spawning grounds in chokka squid (Loligo reynaudi d'orbigny, 1845) recruitment

Downey, Nicola Jean January 2014 (has links)
It was previously thought that the South African chokka squid Loligo reynaudi is exclusively an inshore, shallow water spawner. Although spawning mostly within shallow bays (<60 m) the presence of squid eggs in trawls at depths up to 130 m indicates this species frequently makes use of deeper spawning areas on the mid-shelf. The extent of mid-shelf spawning (referred to as deep spawning) and the contribution to recruitment has yet to be assessed. Studies have shown mid-shelf bottom temperature to vary considerably from those inshore, suggesting chokka squid spawn in two very different oceanographic environments. Considering these apparent environmental differences, what leads to the mid-shelf environment becoming a suitable spawning habitat? Does a suitable benthic habitat, required for the attachment of egg pods, occur on the mid-shelf? These questions are not only important for determining the extent of deep spawning, but also to the understanding of factors “driving” deep spawning. The fate of deep spawned hatchlings is another unknown. It has been proposed that the main chokka squid inshore spawning grounds are positioned to exploit the net westward currents on the Eastern Agulhas Bank, i.e. paralarvae would be transported west from the hatching site to the cold ridge, an area of high primary and secondary productivity on the Central Agulhas Bank. This concept has come to be known as the Western Transport Hypothesis. Lagrangian ROMS-IBMs (regional ocean model system – individual-based model) predict the net westward transport of paralarvae from both the inshore and deep spawning grounds, to the cold ridge. These simulations were used to investigate the transport of hatchlings to the cold ridge feeding grounds before the exhaustion of yolk reserves. The fate of paralarvae on reaching the feeding grounds has not yet been investigated. This work has contributed new knowledge to our understanding of deep spawning and its role in recruitment. Specific aims of this study were to (1) determine the extent, range and importance of the deep spawning grounds relative to those inshore; (2) investigate the deep spawning ground habitat (Agulhas Bank mid-shelf) morphology and oceanographic environment; (3) determine the transport and survival of deep spawned hatchlings; and (4) investigate the origin and distribution of chokka squid paralarvae on the Agulhas Bank. The extent, depth range and importance of the deep spawning grounds, relative to those inshore was assessed using 23 years of demersal trawl survey data. Data for both the west and south coasts of South Africa were examined for egg capsules. No spawning was found on the west coast. Data showed that chokka squid preferred the Eastern Agulhas Bank for spawning. Spawning occurred not only inshore but also on the mid-shelf extending to depths of 270 m near the shelf edge. The majority of deep spawned eggs however, were found in the depth range 71-130 m. Squid egg density markedly decreased beyond 70 m, suggesting delineation between the inshore and deep spawning grounds. Total egg biomass calculations for depths shallower and deeper than 70 m indicated the coastal area to be strongly favoured, i.e. 82 vs. 18%. These results contest the commonly accepted notion that chokka squid is an inshore spawner and redefine the spawning grounds to extend across the shelf. Apart from an initial study investigating bottom temperature on the mid-shelf, very little is known about the deep spawning habitat. St Francis Bay, a commonly used spawning location, was chosen as a demonstration area for further study. The deep spawning grounds (71-130 m) were mapped and benthic habitat described from underwater video footage. A study investigating cross-shelf bottom conditions was undertaken off Thys Bay. CTD data were used to compare seasonal bottom temperature and oxygen on the St Francis Bay inshore and deep spawning grounds. Squid movement between the two spawning habitats was assessed using filament tagging. Predation and fishing pressure across the spawning grounds was reviewed. The mid-shelf benthic habitat was found to be similar to that inshore and available for spawning. Despite the generally colder bottom temperatures on the mid-shelf, this study showed that bottom temperature in deeper waters can at times be warmer than inshore. Although mid-shelf warming events lasted from a few hours to a number of days, they resulted in similar conditions to those on the inshore spawning grounds. It is likely these events act to expand or shift spawning habitat. The movement of squid between the two spawning habitats makes it possible for them to seek patches of warm bottom water with appropiate substrate. This suggests they are spawning habitat opportunists. Predation and fishing pressure appear to be higher on the inshore spawning grounds. It is feasible that this also forces spawners to seek out more favourable habitat offshore. An individual-based model was used to predict the fate of mid-shelf and inshore hatched paralarvae. Within the model, both the highly productive cold ridge and inshore spawning grounds were considered feeding or nursery areas. Paralarvae were released from six inshore and six deep spawning sites, spanning the coast between Port Alfred and Knysna. All paralarvae not reaching the feeding areas before the exhaustion of yolk-reserves (≤5 days), not retained within the feeding grounds (≥14 days), and not retained on the Agulhas Bank after exiting the feeding grounds were considered lost. This work illustrated the dependence of paralarval transport success on both spawning location and time of hatching, as established in earlier studies. The current IBM has expanded on initial work, emphasizing the importance of the cold ridge and inshore spawning grounds as nursery areas for deep and inshore spawned paralarvae, respectively. This work has highlighted the complex interactions between processes influencing recruitment variability for chokka squid. Possible relationships between periods of highest recruitment success and spawning peaks were identified for both spawning habitats. Based on the likely autumn increase in deep spawning off Tsitsikamma, and the beneficial currents during this period, it can be concluded deep spawning may at times contribute significantly to recruitment. This is particularly true for years where the cold ridge persists into winter. Data on chokka squid paralarval distribution are scarce. Paralarval distribution and abundance, in relation to Agulhas Bank oceanography, was investigated using bongo caught paralarvae and corresponding oceanographic data. Individual-based models (IBMs) were used to predict the origin or spawning site of the wild caught paralarvae, with reference to inshore versus deep spawning. Although failing to predict realistic points of origin, this study provided evidence to support a number of scenarios previously assumed to influence chokka squid recruitment. First is the possible influence of coastal upwelling on the retention, and hence spatial distribution, of paralarvae on the inshore spawning grounds. The second factor thought to impact recruitment is the loss of paralarvae from the Agulhas Bank ecosystem. This study confirmed the removal of paralarvae from the Eastern Agulhas Bank due to Agulhas Current boundary phenomena and resultant offshelf leakage. In addition, data suggested that the formation of the cold ridge could enhance retention on the Central Agulhas Bank, and so prevent offshelf leakage from the Central and Western Agulhas Bank. A synthesis of the main conclusions is presented. Implications of the findings and directions for future research are discussed.
332

Sekretariát OSN: Reprezentativní vzorek světové populace nebo převaha určitých skupin? / UN Secretariat: Representative sample of the world population or dominance of specific groups?

Bartošová, Kristýna January 2016 (has links)
This thesis attempts to apply the Representative Bureaucracy theory established and developed within the Public Administration scholarship addressing the lack of formal accountability of bureaucratic bodies on the case of the largest international bureaucracy in the world - the United Nations Secretariat. It builds on the normative presumption that it is necessary to staff the bureaucracy proportionally from all the societal groups so that it reflected the values of the society in whole and the policy outcomes corresponded to those produced if all the society participated in the process. Accordingly, we aspire to find out whether the UN Secretariat is a representative sample of the world population in terms of its bureaucrats' national affiliation, and, if not, what are the factors associated with a better relative representation of a Member State in the UN Secretariat. Through the usage of descriptive statistics tools and Ordinary Least Squares Multiple Linear Regression, we find out that the per capita representation of different Member States in the UN Secretariat is by no means equal and, thus, the UN Secretariat is not a representative sample of the world population. Moreover, the research identified internal capacity of a country to ensure wellbeing and opportunities of its people and low...
333

Modelling space-use and habitat preference from wildlife telemetry data

Aarts, Geert January 2007 (has links)
Management and conservation of populations of animals requires information on where they are, why they are there, and where else they could be. These objectives are typically approached by collecting data on the animals’ use of space, relating these to prevailing environmental conditions and employing these relations to predict usage at other geographical regions. Technical advances in wildlife telemetry have accomplished manifold increases in the amount and quality of available data, creating the need for a statistical framework that can use them to make population-level inferences for habitat preference and space-use. This has been slow-in-coming because wildlife telemetry data are, by definition, spatio-temporally autocorrelated, unbalanced, presence-only observations of behaviorally complex animals, responding to a multitude of cross-correlated environmental variables. I review the evolution of techniques for the analysis of space-use and habitat preference, from simple hypothesis tests to modern modeling techniques and outline the essential features of a framework that emerges naturally from these foundations. Within this framework, I discuss eight challenges, inherent in the spatial analysis of telemetry data and, for each, I propose solutions that can work in tandem. Specifically, I propose a logistic, mixed-effects approach that uses generalized additive transformations of the environmental covariates and is fitted to a response data-set comprising the telemetry and simulated observations, under a case-control design. I apply this framework to non-trivial case-studies using data from satellite-tagged grey seals (Halichoerus grypus) foraging off the east and west coast of Scotland, and northern gannets (Morus Bassanus) from Bass Rock. I find that sea bottom depth and sediment type explain little of the variation in gannet usage, but grey seals from different regions strongly prefer coarse sediment types, the ideal burrowing habitat of sandeels, their preferred prey. The results also suggest that prey aggregation within the water column might be as important as horizontal heterogeneity. More importantly, I conclude that, despite the complex behavior of the study species, flexible empirical models can capture the environmental relationships that shape population distributions.
334

The distribution of predaceous fire ant species on important sea turtle nesting beaches in St. Croix, U.S. Virgin Islands

Unknown Date (has links)
The tropical fire ant, Solenopsis geminata is a New World species with a wide native range including South America as well as several Caribbean islands. The red imported fire ant, Solenopsis invicta is native to parts of South America. Both species are known for preying on sea turtles’ eggs and hatchlings. The objectives of this thesis research were to conduct follow-up and baseline ant species distribution surveys on four sea turtle nesting beaches in St. Croix, U. S. Virgin Islands. Tuna baits were set out at beaches; specimens were collected, frozen, preserved then identified. Results show that there was a significant change in the fire ants’ distribution at Sandy Point National Wildlife Refuge (SPNWR) while none were found at Jack Bay. Fire ants were also present on the other two baseline surveyed nesting beaches. The displacement of S. geminata by S. invicta was observed at SPNWR, which also was presumed by previous surveys. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
335

A Bayesian approach to habitat suitability prediction

Lockett, Daniel Edwin IV 27 March 2012 (has links)
For the west coast of North America, from northern California to southern Washington, a habitat suitability prediction framework was developed to support wave energy device siting. Concern that wave energy devices may impact the seafloor and benthos has renewed research interest in the distribution of marine benthic invertebrates and factors influencing their distribution. A Bayesian belief network approach was employed for learning species-habitat associations for Rhabdus rectius, a tusk-shaped marine infaunal Mollusk. Environmental variables describing surficial geology and water depth were found to be most influential to the distribution of R. rectius. Water property variables, such as temperature and salinity, were less influential as distribution predictors. Species-habitat associations were used to predict habitat suitability probabilities for R. rectius, which were then mapped over an area of interest along the south-central Oregon coast. Habitat suitability prediction models tested well against data withheld for crossvalidation supporting our conclusion that Bayesian learning extracts useful information available in very small, incomplete data sets and identifies which variables drive habitat suitability for R. rectius. Additionally, Bayesian belief networks are easily updated with new information, quantitative or qualitative, which provides a flexible mechanism for multiple scenario analyses. The prediction framework presented here is a practical tool informing marine spatial planning assessment through visualization of habitat suitability. / Graduation date: 2012
336

Range-use estimation and encounter probability for juvenile Steller sea lions (Eumetopias jubatus) in the Prince William Sound-Kenai Fjords region of Alaska

Meck, Stephen R. 21 March 2013 (has links)
Range, areas of concentrated activity, and dispersal characteristics for juvenile Steller sea lions Eumetopias jubatus in the endangered western population (west of 144° W in the Gulf of Alaska) are poorly understood. This study quantified space use by analyzing post-release telemetric tracking data from satellite transmitters externally attached to n = 65 juvenile (12-25 months; 72.5 to 197.6 kg) Steller sea lions (SSLs) captured in Prince William Sound (60°38'N -147°8'W) or Resurrection Bay (60°2'N -149°22'W), Alaska, from 2003-2011. The analysis divided the sample population into 3 separate groups to quantify differences in distribution and movement. These groups included sex, the season when collected, and the release type (free ranging animals which were released immediately at the site of capture, and transient juveniles which were kept in captivity for up to 12 weeks as part of a larger ongoing research program). Range-use was first estimated by using the minimum convex polygon (MCP) approach, and then followed with a probabilistic kernel density estimation (KDE) to evaluate both individual and group utilization distributions (UDs). The LCV method was chosen as the smoothing algorithm for the KDE analysis as it provided biologically meaningful results pertaining to areas of concentrated activity (generally, haulout locations). The average distance traveled by study juveniles was 2,131 ± 424 km. The animals mass at release (F[subscript 1, 63] = 1.17, p = 0.28) and age (F[subscript 1, 63] = 0.033, p = 0.86) were not significant predictors of travel distance. Initial MCP results indicated the total area encompassed by all study SSLs was 92,017 km², excluding land mass. This area was heavily influenced by the only individual that crossed over the 144°W Meridian, the dividing line between the two distinct population segments. Without this individual, the remainder of the population (n = 64) fell into an area of 58,898 km². The MCP area was highly variable, with a geometric average of 1,623.6 km². Only the groups differentiated by season displayed any significant difference in area size, with the Spring/Summer (SS) groups MCP area (Mdn = 869.7 km²) being significantly less than that of the Fall/Winter (FW) group (Mdn = 3,202.2 km²), U = 330, p = 0.012, r = -0.31. This result was not related to the length of time the tag transmitted (H(2) = 49.65, p = 0.527), nor to the number of location fixes (H(2) = 62.77, p = 0.449). The KDE UD was less variable, with 50% of the population within a range of 324-1,387 km2 (mean=690.6 km²). There were no significant differences in area use associated with sex or release type (seasonally adjusted U = 124, p = 0.205, r = -0.16 and U = 87, p = 0.285, r = -0.13, respectively). However, there were significant differences in seasonal area use: U = 328, p = 0.011, r = -0.31. There was no relationship between the UD area and the amount of time the tag remained deployed (H(2) = 45.30, p = 0.698). The kernel home range (defined as 95% of space use) represented about 52.1% of the MCP range use, with areas designated as "core" (areas where the sea lions spent fully 50% of their time) making up only about 6.27% of the entire MCP range and about 11.8% of the entire kernel home range. Area use was relatively limited – at the population level, there were a total of 6 core areas which comprised 479 km². Core areas spanned a distance of less than 200 km from the most western point at the Chiswell Islands (59°35'N -149°36'W) to the most eastern point at Glacier Island (60°54'N -147°6'W). The observed differences in area use between seasons suggest a disparity in how juvenile SSLs utilize space and distribute themselves over the course of the year. Due to their age, this variation is less likely due to reproductive considerations and may reflect localized depletion of prey near preferred haul-out sites and/or changes in predation risk. Currently, management of the endangered western and threatened eastern population segments of the Steller sea lion are largely based on population trends derived from aerial survey counts and terrestrial-based count data. The likelihood of individuals to be detected during aerial surveys, and resulting correction factors to calculate overall population size from counts of hauled-out animals remain unknown. A kernel density estimation (KDE) analysis was performed to delineate boundaries around surveyed haulout locations within Prince William Sound-Kenai Fjords (PWS-KF). To closely approximate the time in which population abundance counts are conducted, only sea lions tracked during the spring/summer (SS) months (May 10-August 10) were chosen (n = 35). A multiple state model was constructed treating the satellite location data, if it fell within a specified spatiotemporal context, as a re-encounter within a mark-recapture framework. Information to determine a dry state was obtained from the tags time-at-depth (TAD) histograms. To generate an overall terrestrial detection probability 1) The animal must have been within a KDE derived core-area that coincided with a surveyed haulout site 2) it must have been dry and 3) it must have provided at least one position during the summer months, from roughly 11:00 AM-5:00 PM AKDT. A total of 10 transition states were selected from the data. Nine states corresponded to specific surveyed land locations, with the 10th, an "at-sea" location (> 3 km from land) included as a proxy for foraging behavior. A MLogit constraint was used to aid interpretation of the multi-modal likelihood surface, and a systematic model selection process employed as outlined by Lebreton & Pradel (2002). At the individual level, the juveniles released in the spring/summer months (n = 35) had 85.3% of the surveyed haulouts within PWS-KF encompass KDE-derived core areas (defined as 50% of space use). There was no difference in the number of surveyed haulouts encompassed by core areas between sexes (F[subscript 1, 33] << 0.001, p = 0.98). For animals held captive for up to 12 weeks, 33.3% returned to the original capture site. The majority of encounter probabilities (p) fell between 0.42 and 0.78 for the selected haulouts within PWS, with the exceptions being Grotto Island and Aialik Cape, which were lower (between 0.00-0.17). The at-sea (foraging) encounter probability was 0.66 (± 1 S.E. range 0.55-0.77). Most dry state probabilities fell between 0.08-0.38, with Glacier Island higher at 0.52, ± 1 S.E. range 0.49-0.55. The combined detection probability for hauled-out animals (the product of at haul-out and dry state probabilities), fell mostly between 0.08-0.28, with a distinct group (which included Grotto Island, Aialik Cape, and Procession Rocks) having values that averaged 0.01, with a cumulative range of ≈ 0.00-0.02 (± 1 S.E.). Due to gaps present within the mark-recapture data, it was not possible to run a goodness-of-fit test to validate model fit. Therefore, actual errors probably slightly exceed the reported standard errors and provide an approximation of uncertainties. Overall, the combined detection probabilities represent an effort to combine satellite location and wet-dry state telemetry and a kernel density analysis to quantify the terrestrial detection probability of a marine mammal within a multistate modeling framework, with the ultimate goal of developing a correction factor to account for haulout behavior at each of the surveyed locations included in the study. / Graduation date: 2013
337

Environmental effects on group structure and vigilance in vervet monkeys

Pasternak, Graham M January 2011 (has links)
Narrow riparian woodlands along non-perennial streams have made it possible for vervet monkeys to penetrate the semi-arid karoo ecosystem of South Africa, while artificial water points have more recently allowed these populations to colonize much more marginal habitat away from natural water sources. In order to determine the sequelae of life in these narrow, linear woodlands for historically 'natural' populations, I determined the size of troops in relation to their reliance on natural and artificial water sources and collected detailed data from two river-centred troops on activity, diet and ranging behaviour over an annual cycle. These data indicate that river-centred troops were distinctive primarily for their large group sizes and, consequently, their large adult cohorts, and the extent of home range overlap in what is regarded as a territorial species. While large group size carried the corollary of increased day journey length and longer estimated interbirth intervals, there was little other indication of ecological stress. Specifically, the rate of predation appears to be lower than observed at other sites. Predation encounters here, encourage the use of predator vigilance rather than influencing the use of space within the habitat. The high density of Acacia karoo, which accounted for a third of annual foraging effort in what was a relatively depauperate floristic habitat, allows for an adequate energy intake for groups of this size. I ascribed the large group size and home range overlap to the inability of groups to undergo fission. / xiii, 79 leaves : ill., maps ; 29 cm
338

Thermal physiology and predicted distribution of Zygogramma bicolorata (Chrysomelidae), a promising agent for the biological control of the invasive weed Parthenium hysterophorus in South Africa.

King, Helen. 20 May 2014 (has links)
Parthenium hysterophorus (Asteraceae), classified as an emerging weed in South Africa, has become abundant throughout large parts of southern and eastern Africa. In South Africa it has invaded areas in KwaZulu-Natal, Mpumalanga, the North West Province and Limpopo. A biological control programme against parthenium weed was launched in South Africa in 2003, based on the success achieved in Australia. Zygogramma bicolorata, a leaf-feeding beetle native to Mexico, was imported into South Africa via Central Queensland, Australia where it was released in the 1980s. This thesis examines aspects of the thermal physiology of Z. bicolorata which, in conjunction with its native and exotic geographical distribution, was used to predict the potential distribution of the agent in South Africa, in relation to climate. To determine Z. bicolorata’s physiological capability, several physiological parameters were examined for mechanistic modelling purposes. These parameters included the beetle’s lethal thermal limits, critical thermal limits, lethal humidities (Chapter 2) and developmental rate at constant temperatures (Chapter 3). In Chapter 4, these physiological parameters were entered into the dynamic modelling program CLIMEX (CLIMEX programme ver. 2, CSIRO Entomology ©) and a map of the areas that are acceptable for the establishment of Z. bicolorata was produced. The CLIMEX model predicted that most of South Africa is favourable for the establishment of the beetle, except in the west of the country and in the north of Lesotho, extending into South Africa. All areas in which parthenium currently occurs were predicted to be very favourable for Z. bicolorata establishment and proliferation. Optimal release sites aimed at initial establishment were earmarked at three areas in the northeastern part of South Africa (Jozini, Ndumu Game Reserve and along the road from Swaziland to Mozambique). It is concluded that Z. bicolorata is climatically suited to South Africa, increasing the likelihood that populations will establish and proliferate when released. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
339

Diversité, biogéographie, écologie et conservation des Rubioideae-Rubiaceae en Afrique centrale, Burundi, R.D.Congo, Rwanda / Diversity, biogeography, ecology and conservation of Rubioideae-Rubiaceae in Central Africa, Burundi, D.R.Congo, Rwanda

Niyongabo, Ferdinand 27 April 2012 (has links)
Cette étude est une contribution à la connaissance de la biodiversité, la distribution géographique et la conservation des Rubioideae (Rubiaceae) d’Afrique centrale (Burundi,R.D.Congo et Rwanda). Le travail est basé sur l’analyse critique des riches collections conservées dans les grands herbaria de Belgique et du Burundi (plus de 10.000 échantillons). Une check-list critique des Rubioideae d’Afrique centrale a été établie; 291 taxons ont été inventoriés et une carte de distribution géographique a été tracée pour chacun, après géoréférencement de toutes<p>les récoltes. Des taxons nouveaux pour le territoire étudié ont été découverts, révélant le caractère incomplet de la ‘World check-list of Rubiaceae’. Des taxons nouveaux pour la science ont été mis en évidence. Une espèce nouvelle (avec deux variétés) a été décrite. Les analyses de distribution ont utilisé deux niveaux de résolution: le système d’information géographique (SIG) pour la production des cartes de la distribution des espèces et le système de maillage pour calculer la densité et l’effort d’échantillonnage. La richesse floristique apparente est fortement biaisée par l’intensité d’échantillonnage. Après correction de ces biais, la diversité reste inégalement répartie.<p>Des régions de plus haute diversité peuvent être expliquées à la fois par des processus déterministes (régions à haute diversité ’habitats), et, probablement aussi par des contingences historiques (refuges). Elles correspondent à des zones de spéciation active ou de moindre extinction. De plus, cette diversité varie selon les phytochories considérées.<p>La distribution des taxons a été utilisée pour tenter de redéfinir sur une base objective des subdivisions phytogéographiques du territoire étudié. L’approche basée sur la similarité floristique et la distribution potentielle a démontré le rôle déterminant des taxons indicateurs et des variables environnementales<p>dans l’établissement d’un système cohérent de phytochories pour l’Afrique centrale. Un nouveau<p>système de trois territoires floristiques défini sur base des Rubioideae est comparativement proche de celui de White (1979, 1983) mais ne comprend pas des zones de transition.<p>Enfin, la caractérisation de l’état de conservation des Rubioideae de la zone d’étude, sur base de la méthodologie de l’UICN, a porté sur cinquante-six taxons (sub-)endémiques d’Afrique centrale. L’évaluation paramétrique a été largement utilisée. Elle est basée sur la détermination de la zone d’occupation (AOO) et de la zone d’occurrence (EOO). La proportion des Rubioideae menacés et coïncide avec celles des autres groupes déjà évalués. Cette analyse a démontré qu’il existe une corrélation entre les taxons menacés et les zones de forte concentration humaine.<p><p><p>This study is a contribution to the knowledge of biodiversity, geographic distribution and conservation of Rubioideae (Rubiaceae), a group of flowering plants in Central Africa (D.R.Congo, Rwanda, Burundi). The work is based on the critical evaluation of the rich herbarium collections conserved in Belgium and Burundi (> 10,000 specimens). A critical check-list of Rubioideae in Central Africa has been produced, comprising 291 taxa. A distribution map has been obtained for each of them. A number of taxa are new to the area, highlighting the gaps of knowledge in the ‘World check-list of Rubiaceae’. Species new to science have been detected, one of which has been formally described (with two varieties) in this study. The analysis of distribution patterns has been performed at two levels of resolution. Grid-maps have been used to analyse patterns of species diversity. Floristic richness appears strongly correlated with<p>sampling effort. After correction for sampling effort, species diversity remains heterogeneous.<p>Regions of higher diversity correspond either to areas of more active speciation, in relation to a high diversity of habitats, or to forest refuges where extinction rates have been lower. Additionally, this diversity varies between the different phytochoria recognized. The distribution of species has been used in an attempt to redefine phytochoria based only on floristic criteria. Floristic similarity, and potential distribution (based on climatic parameters), has shown that phytochoria can be effectively defined and characterized by the method of indicator taxa. Three major<p>phytochoria show a reasonably match with phytochoria previously proposed by White (1979, 1983), but White’s transition zones are not highlighted. Finally, distribution data have been used to critically evaluate the conservation status of 56 taxa, using the methodology and criteria of IUCN. The area of occupancy (AOO) and extent of occurrence (EOO) were calculated and used as main criteria to evaluate the species. A relatively high proportion of taxa appear to be threatened, especially in relation to urbanization and deforestation in the most<p>highly populated parts of the study area. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
340

Etude taxonomique et biogéographique des plantes endémiques d'Afrique centrale atlantique: le cas des Orchidaceae / Taxonomic and biogeographic study of plants endemic to the Atlantic Central Africa: the case of the Orchidaceae

Droissart, Vincent 16 January 2009 (has links)
L’Afrique centrale atlantique (ACA) englobe l’ensemble du domaine bas-guinéen, les îles du Golfe de Guinée et une partie de l’archipel afromontagnard. Plusieurs centres d’endémisme ont été identifiés en son sein et sont généralement considérés comme liés à la présence de refuges forestiers durant les périodes glaciaires. Cependant, l’origine de cet endémisme, sa localisation et les méthodes permettant d’identifier ces centres restent controversées. La localisation de ces zones d’endémisme et des plantes rares qu’elles abritent, est pourtant un prérequis indispensable pour la mise en place de politiques cohérentes de conservation et demeure une priorité pour les organisations privées, institutionnelles ou gouvernementales actives dans la gestion et le maintien durable de la biodiversité.<p><p>Cette étude phytogéographique porte sur la famille des Orchidaceae et est basée sur l’analyse de la distribution des taxons endémiques de l’ACA. Elle s’appuie sur un jeu de données original résultant d’un effort d’échantillonnage important au Cameroun et d’un travail d’identification et de localisation de spécimens dans les principaux herbaria européens abritant des collections d’ACA. Durant cette étude, (i) nous avons tout d’abord identifié ces taxons endémiques et documenté leur distribution au travers de plusieurs contributions taxonomiques et floristiques, (ii) nous nous sommes ensuite intéressé aux nouvelles méthodes permettant d’analyser ces données d’herbier de plantes rares et donc pauvrement documentées, testant aussi l’intérêt des Orchidaceae comme marqueurs chorologiques, et finalement, appliquant ces méthodes à notre jeu de données, (iii) nous avons délimité des centres d’endémisme et identifié les territoires phytogéographiques des Orchidaceae en ACA.<p><p>(i) Une révision taxonomique des genres Chamaeangis Schltr. et Stolzia Schltr. a été réalisée respectivement. Sept nouveaux taxons ont été décrits: Angraecum atlanticum Stévart & Droissart, Chamaeangis spiralis Stévart & Droissart, Chamaeangis lecomtei (Finet) Schltr. var. tenuicalcar Stévart & Droissart, Polystachya engogensis Stévart & Droissart, Polystachya reticulata Stévart & Droissart, Stolzia repens (Rolfe) Summerh var. cleistogama Stévart, Droissart & Simo et Stolzia grandiflora P.J.Cribb subsp. lejolyana Stévart, Droissart & Simo. Plusieurs notes taxonomiques, phytogéographiques et écologiques supplémentaires ont également été redigées. Au total, nous avons identifié 203 taxons d’Orchidaceae endémiques d’ACA parmi lesquels 193 sont pris en compte pour l’étude des patrons d’endémisme.<p><p>(ii) Au Cameroun, les patrons de distribution des Orchidaceae et des Rubiaceae endémiques d’ACA ont été étudiés conjointement. Des méthodes de rééchantillonnage des données (raréfaction) ont été appliquées pour calculer des indices de diversité et de similarité. Elles ont permis de corriger les biais liés à la variation de l’effort d’échantillonnage. Un gradient de continentalité a été observé, les parties côtières étant les plus riches en taxons endémiques d’ACA. Contrairement à la région du Mont Cameroun et aux massifs de Kupe/Bakossi qui ont connu une attention particulière des politiques et des scientifiques, la partie côtière du sud Cameroun, presque aussi riche, reste mal inventoriée pour plusieurs familles végétales.<p><p>Cette analyse à l’échelle du Cameroun a également permis de comparer les patrons d’endémisme des Orchidaceae et des Rubiaceae. Les différences observées seraient principalement dues à la présence d’Orchidaceae terrestres dans les végétations basses et les prairies montagnardes de la dorsale camerounaise alors que les Rubiaceae sont généralement peu représentées dans ces habitats. Au sein des habitats forestiers, la concordance entre les patrons d’endémisme des Orchidaceae et des Rubiaceae remet en question l’utilisation des capacités de dispersion des espèces comme critère pour choisir les familles permettant l’identification des refuges forestiers et semble ainsi confirmer la pertinence de l’utilisation des Orchidaceae comme marqueur chorologique.<p><p>La distribution potentielle a été utilisée pour étudier en détail l’écologie, la distribution et le statut de conservation de Diceratostele gabonensis Summerh. une Orchidaceae endémique de la région guinéo-congolaise uniquement connue d’un faible nombre d’échantillons. Cette méthodologie semble appropriée pour compléter nos connaissances sur la distribution des espèces rares et guider les futurs inventaires en Afrique tropicale.<p><p>(iii) En ACA, les Orchidaceae permettent d’identifier plusieurs centres d’endémisme qui coïncident généralement avec ceux identifiés précédemment pour d’autres familles végétales. Ces constats supportent aussi l’utilisation des Orchidaceae comme marqueur chorologique. La délimitation des aires d’endémisme des Orchidaceae a ainsi permis de proposer une nouvelle carte phytogéographique de l’ACA. Les éléments phytogéographiques propres à chacune des dix phytochories décrites ont été identifiés et leurs affinités floristiques discutées. Les résultats phytogéographiques obtenus (a) soutiennent l’existence d’une barrière phytogéographique matérialisée par la rivière Sanaga entre les deux principaux centres et aires d’endémisme de l’ACA, (b) étendent l’archipel afromontagnard situé principalement au Cameroun au plateau de Jos (Nigeria) et (c) montrent l’importance de la chaîne montagneuse morcelée Ngovayang-Mayombe pour la distribution de l’endémisme en ACA. Cette chaîne de montagne, qui s’étend le long des côtes de l’océan du sud Cameroun au Congo-Brazzaville et qui correspond à plusieurs refuges forestiers identifiés par de nombreux auteurs, est ici considérée comme une seule aire d’endémisme morcelée./<p>Atlantic central Africa (ACA) covers the Lower Guinean Domain, the four islands of the Gulf of Guinea and a part of the afromontane archipelago. Different centres of endemism have been identified into this area and are usually considered as related to glacial forest refuges. However, the origin of this endemism, the localization of the centres and the methods employed to identify these centres are subject to debate. Yet, the localization of these centres of endemism and the identification of the rare plants they harbor is an essential prerequisite to setting up rational conservation policies, and remains a priority for private, institutional and governmental organizations which are dealing with the sustainable management of biodiversity.<p><p>This phytogeographical study focuses on Orchidaceae and analyses the distribution of the taxa endemic to ACA. We use an original dataset resulting from an important sampling efforts and the identification of specimens coming from all the principal herbaria where collections from ACA are housed. During this study, (i) we first identified the taxa endemic to ACA and documented their distribution through several taxonomic and floristic contributions, (ii) we used and developed new methods allowing to correct for sampling bias associated with the use of rare and poorly documented taxa, testing at the same time the use of Orchidaceae as chorological markers, and finally, applying these methods to our dataset, (iii) we delimited the centres of endemism and identified the phytogeographical territories of Orchidaceae in ACA.<p><p>(i) A taxonomic revision of Chamaeangis Schltr. and Stolzia Schltr. respectively was carried out. Seven new taxa were described: Angraecum atlanticum Stévart & Droissart, Chamaeangis spiralis Stévart & Droissart, Chamaeangis lecomtei (Finet) Schltr. var. tenuicalcar Stévart & Droissart, Polystachya engogensis Stévart & Droissart, Polystachya reticulata Stévart & Droissart, Stolzia repens (Rolfe) Summerh var. cleistogama Stévart, Droissart & Simo and Stolzia grandiflora P.J.Cribb subsp. lejolyana Stévart, Droissart & Simo. Several additional taxonomic, phytogeographical and ecological notes were also published. We finally identified 203 Orchidaceae taxa endemic to ACA, among which 193 were used to study the patterns of endemism.<p><p>(ii) In Cameroon, the distribution patterns of both Orchidaceae and Rubiaceae endemic to ACA were studied. Subsampling methods (rarefaction) were applied to calculate diversity and similarity indices and to correct potential bias associated with heterogeneous sampling intensity. A gradient of continentality was confirmed in Cameroon, the coastal part being the richest in taxa endemic to ACA. The Cameroon Mountain and the Kupe/Bakossi mountain massifs have received a great consideration of politics and scientists. On the contrary, the Southern coastal part of Cameroon, though almost as rich as the Northern part, remains poorly known for several plant families.<p>This analysis also allowed us to compare patterns of endemism of Orchidaceae and Rubiaceae. The differences observed could be mainly due to the terrestrial habit of some Orchidaceae, which are only found in the grasslands of the highest part of the Cameroonian volcanic line where endemic Rubiaceae are rare. Within forest habitats, the concordance between the patterns of endemism of Orchidaceae and Rubiaceae question the widespread use of dispersal ability as a selection criterion for the families used to identify forest refuges. This also confirms the relevance of Orchidaceae as chorological marker.<p><p>Species distribution modelling was used of an in depth study of the ecology, the distribution and the conservation status of Diceratostele gabonensis Summerh. an Orchidaceae endemic to the Guineo-Congolian regional centre of endemism which is only known from very few collections. This method is proved to be appropriate to complete our knowledge on the distribution of rare plant species and to guide the future inventories in tropical Africa.<p><p>(iii) In ACA, an analysis of the distribution of endemic Orchidaceae confirmed the presence and location of several centres of endemism previously identified on the basis of other plant families. This result again supports the use of Orchidaceae as a chorological marker. The chorological study of the endemic Orchidaceae allowed us to propose a new phytogeographical map for ACA. Phytogeographical elements for each of the ten phytochoria described were identified and their floristic affinities were also discussed. Our results (a) support the existence of a phytogeographical barrier, materialized by the Sanaga River, between the two main centres and area of endemism of the ACA, (b) extend the limits of the afromontane archipelago to the Jos Plateau in Nigeria and (c) show the importance of the Ngovayang-Mayombe line to explain the distribution of endemism in ACA. This mountainous line, stretching along the ocean coast from Southern Cameroon to Congo-Brazzaville, corresponds to several forest refuges identified by many authors, and is here considered as an unique but discontinuous area of endemism.<p><p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0957 seconds