• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 43
  • 27
  • 11
  • 2
  • 1
  • Tagged with
  • 198
  • 70
  • 43
  • 34
  • 32
  • 32
  • 27
  • 26
  • 25
  • 25
  • 22
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Modellierung, Analyse und Bewertung des chemischen Gewässerzustandes in Flussgebieten

Heß, Oliver. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Osnabrück.
142

Lenkung teilschlagspezifischer Unkrautkontrollverfahren unter Berücksichtigung der Populationsdynamik von Unkräutern mit computergestützten Modellen

Dicke, Dominik. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Bonn.
143

OpenStreetMap

Pönisch, Jens 26 November 2008 (has links)
Vorstellung des Projekts OpenStreetMap: - Philosophie, Arbeitsweise, Lizenzen - Erfassen von Geodaten - Technik und Werkzeuge - Anwendungen
144

OpenStreetMap-Karten selbst gebaut

Pönisch, Jens 07 May 2012 (has links)
Der Vortrag erläutert, wie aus den Daten des OpenStreetMap-Projekts Karten erzeugt werden können. Neben dem Zusammensetzen einfacher Karten aus vorberechneten Tiles wird im Hauptteil erläutert, wie die Vektordaten zum Zeichnen benutzt werden können. Die Darstellung von Höhendaten schließt den Vortrag ab.
145

A 3d geoscience information system framework

Apel, Marcus 17 December 2004 (has links)
Two-dimensional geographical information systems are extensively used in the geosciences to create and analyse maps. However, these systems are unable to represent the Earth's subsurface in three spatial dimensions. The objective of this thesis is to overcome this deficiency, to provide a general framework for a 3d geoscience information system (GIS), and to contribute to the public discussion about the development of an infrastructure for geological observation data, geomodels, and geoservices. Following the objective, the requirements for a 3d GIS are analysed. According to the requirements, new geologically sensible query functionality for geometrical, topological and geological properties has been developed and the integration of 3d geological modeling and data management system components in a generic framework has been accomplished. The 3d geoscience information system framework presented here is characterized by the following features: - Storage of geological observation data and geomodels in a XML-database server. According to a new data model, geological observation data can be referenced by a set of geomodels. - Functionality for querying observation data and 3d geomodels based on their 3d geometrical, topological, material, and geological properties were developed and implemented as plug-in for a 3d geomodeling user application. - For database queries, the standard XML query language has been extended with 3d spatial operators. The spatial database query operations are computed using a XML application server which has been developed for this specific purpose. This technology allows sophisticated 3d spatial and geological database queries. Using the developed methods, queries can be answered like: "Select all sandstone horizons which are intersected by the set of faults F". This request contains a topological and a geological material parameter. The combination of queries with other GIS methods, like visual and statistical analysis, allows geoscience investigations in a novel 3d GIS environment. More generally, a 3d GIS enables geologists to read and understand a 3d digital geomodel analogously as they read a conventional 2d geological map.
146

Deep Learning for Geospatial Environmental Regression / Deep Learning für Regressionsmodelle mit georäumlichen Umweltdaten

Steininger, Michael January 2023 (has links) (PDF)
Environmental issues have emerged especially since humans burned fossil fuels, which led to air pollution and climate change that harm the environment. These issues’ substantial consequences evoked strong efforts towards assessing the state of our environment. Various environmental machine learning (ML) tasks aid these efforts. These tasks concern environmental data but are common ML tasks otherwise, i.e., datasets are split (training, validatition, test), hyperparameters are optimized on validation data, and test set metrics measure a model’s generalizability. This work focuses on the following environmental ML tasks: Regarding air pollution, land use regression (LUR) estimates air pollutant concentrations at locations where no measurements are available based on measured locations and each location’s land use (e.g., industry, streets). For LUR, this work uses data from London (modeled) and Zurich (measured). Concerning climate change, a common ML task is model output statistics (MOS), where a climate model’s output for a study area is altered to better fit Earth observations and provide more accurate climate data. This work uses the regional climate model (RCM) REMO and Earth observations from the E-OBS dataset for MOS. Another task regarding climate is grain size distribution interpolation where soil properties at locations without measurements are estimated based on the few measured locations. This can provide climate models with soil information, that is important for hydrology. For this task, data from Lower Franconia is used. Such environmental ML tasks commonly have a number of properties: (i) geospatiality, i.e., their data refers to locations relative to the Earth’s surface. (ii) The environmental variables to estimate or predict are usually continuous. (iii) Data can be imbalanced due to relatively rare extreme events (e.g., extreme precipitation). (iv) Multiple related potential target variables can be available per location, since measurement devices often contain different sensors. (v) Labels are spatially often only sparsely available since conducting measurements at all locations of interest is usually infeasible. These properties present challenges but also opportunities when designing ML methods for such tasks. In the past, environmental ML tasks have been tackled with conventional ML methods, such as linear regression or random forests (RFs). However, the field of ML has made tremendous leaps beyond these classic models through deep learning (DL). In DL, models use multiple layers of neurons, producing increasingly higher-level feature representations with growing layer depth. DL has made previously infeasible ML tasks feasible, improved the performance for many tasks in comparison to existing ML models significantly, and eliminated the need for manual feature engineering in some domains due to its ability to learn features from raw data. To harness these advantages for environmental domains it is promising to develop novel DL methods for environmental ML tasks. This thesis presents methods for dealing with special challenges and exploiting opportunities inherent to environmental ML tasks in conjunction with DL. To this end, the proposed methods explore the following techniques: (i) Convolutions as in convolutional neural networks (CNNs) to exploit reoccurring spatial patterns in geospatial data. (ii) Posing the problems as regression tasks to estimate the continuous variables. (iii) Density-based weighting to improve estimation performance for rare and extreme events. (iv) Multi-task learning to make use of multiple related target variables. (v) Semi–supervised learning to cope with label sparsity. Using these techniques, this thesis considers four research questions: (i) Can air pollution be estimated without manual feature engineering? This is answered positively by the introduction of the CNN-based LUR model MapLUR as well as the off-the-shelf LUR solution OpenLUR. (ii) Can colocated pollution data improve spatial air pollution models? Multi-task learning for LUR is developed for this, showing potential for improvements with colocated data. (iii) Can DL models improve the quality of climate model outputs? The proposed DL climate MOS architecture ConvMOS demonstrates this. Additionally, semi-supervised training of multilayer perceptrons (MLPs) for grain size distribution interpolation is presented, which can provide improved input data. (iv) Can DL models be taught to better estimate climate extremes? To this end, density-based weighting for imbalanced regression (DenseLoss) is proposed and applied to the DL architecture ConvMOS, improving climate extremes estimation. These methods show how especially DL techniques can be developed for environmental ML tasks with their special characteristics in mind. This allows for better models than previously possible with conventional ML, leading to more accurate assessment and better understanding of the state of our environment. / Umweltprobleme sind vor allem seit der Verbrennung fossiler Brennstoffe durch den Menschen entstanden. Dies hat zu Luftverschmutzung und Klimawandel geführt, was die Umwelt schädigt. Die schwerwiegenden Folgen dieser Probleme haben starke Bestrebungen ausgelöst, den Zustand unserer Umwelt zu untersuchen. Verschiedene Ansätze des maschinellen Lernens (ML) im Umweltbereich unterstützen diese Bestrebungen. Bei diesen Aufgaben handelt es sich um gewöhnliche ML-Aufgaben, z. B. werden die Datensätze aufgeteilt (Training, Validation, Test), Hyperparameter werden auf den Validierungsdaten optimiert, und die Metriken auf den Testdaten messen die Generalisierungsfähigkeit eines Modells, aber sie befassen sich mit Umweltdaten. Diese Arbeit konzentriert sich auf die folgenden Umwelt-ML-Aufgaben: In Bezug auf Luftverschmutzung schätzt Land Use Regression (LUR) die Luftschadstoffkonzentration an Orten, an denen keine Messungen verfügbar sind auf Basis von gemessenen Orten und der Landnutzung (z. B. Industrie, Straßen) der Orte. Für LUR werden in dieser Arbeit Daten aus London (modelliert) und Zürich (gemessen) verwendet. Im Zusammenhang mit dem Klimawandel ist eine häufige ML-Aufgabe Model Output Statistics (MOS), bei der die Ausgaben eines Klimamodells so angepasst werden, dass sie mit Erdbeobachtungen besser übereinstimmen. Dadurch werden genauere Klimadaten erzeugt. Diese Arbeit verwendet das regionale Klimamodell REMO und Erdbeobachtungen aus dem E-OBS-Datensatz für MOS. Eine weitere Aufgabe im Zusammenhang mit dem Klima ist die Interpolation von Korngrößenverteilungen. Hierbei werden Bodeneigenschaften an Orten ohne Messungen auf Basis von wenigen gemessenen Orten geschätzt, um Klimamodelle mit Bodeninformationen zu versorgen, die für die Hydrologie wichtig sind. Für diese Aufgabe werden in dieser Arbeit Bodenmessungen aus Unterfranken herangezogen. Solche Umwelt-ML-Aufgaben haben oft eine Reihe von Eigenschaften: (i) Georäumlichkeit, d. h. ihre Daten beziehen sich auf Standorte relativ zur Erdoberfläche. (ii) Die zu schätzenden oder vorherzusagenden Umweltvariablen sind normalerweise kontinuierlich. (iii) Daten können unbalanciert sein, was auf relativ seltene Extremereignisse (z. B. extreme Niederschläge) zurückzuführen ist. (iv) Pro Standort können mehrere verwandte potenzielle Zielvariablen verfügbar sein, da Messgeräte oft verschiedene Sensoren enthalten. (v) Zielwerte sind räumlich oft nur spärlich vorhanden, da die Durchführung von Messungen an allen gewünschten Orten in der Regel nicht möglich ist. Diese Eigenschaften stellen eine Herausforderung, aber auch eine Chance bei der Entwicklung von ML-Methoden für derlei Aufgaben dar. In der Vergangenheit wurden ML-Aufgaben im Umweltbereich mit konventionellen ML-Methoden angegangen, wie z. B. lineare Regression oder Random Forests (RFs). In den letzten Jahren hat der Bereich ML jedoch durch Deep Learning (DL) enorme Fortschritte über diese klassischen Modelle hinaus gemacht. Bei DL verwenden die Modelle mehrere Schichten von Neuronen, die mit zunehmender Schichtungstiefe immer abstraktere Merkmalsdarstellungen erzeugen. DL hat zuvor undurchführbare ML-Aufgaben realisierbar gemacht, die Leistung für viele Aufgaben im Vergleich zu bestehenden ML-Modellen erheblich verbessert und die Notwendigkeit für manuelles Feature-Engineering in einigen Bereichen aufgrund seiner Fähigkeit, Features aus Rohdaten zu lernen, eliminiert. Um diese Vorteile für ML-Aufgaben in der Umwelt nutzbar zu machen, ist es vielversprechend, geeignete DL-Methoden für diesen Bereich zu entwickeln. In dieser Arbeit werden Methoden zur Bewältigung der besonderen Herausforderungen und zur Nutzung der Möglichkeiten von Umwelt-ML-Aufgaben in Verbindung mit DL vorgestellt. Zu diesem Zweck werden in den vorgeschlagenen Methoden die folgenden Techniken untersucht: (i) Faltungen wie in Convolutional Neural Networks (CNNs), um wiederkehrende räumliche Muster in Geodaten zu nutzen. (ii) Probleme als Regressionsaufgaben stellen, um die kontinuierlichen Variablen zu schätzen. (iii) Dichtebasierte Gewichtung zur Verbesserung der Schätzungen bei seltenen und extremen Ereignissen. (iv) Multi-Task-Lernen, um mehrere verwandte Zielvariablen zu nutzen. (v) Halbüber- wachtes Lernen, um auch mit wenigen bekannten Zielwerten zurechtzukommen. Mithilfe dieser Techniken werden in der Arbeit vier Forschungsfragen untersucht: (i) Kann Luftverschmutzung ohne manuelles Feature Engineering geschätzt werden? Dies wird durch die Einführung des CNN-basierten LUR-Modells MapLUR sowie der automatisierten LUR–Lösung OpenLUR positiv beantwortet. (ii) Können kolokalisierte Verschmutzungsdaten räumliche Luftverschmutzungsmodelle verbessern? Hierfür wird Multi-Task-Learning für LUR entwickelt, das Potenzial für Verbesserungen mit kolokalisierten Daten zeigt. (iii) Können DL-Modelle die Qualität der Ausgaben von Klimamodellen verbessern? Die vorgeschlagene DL-MOS-Architektur ConvMOS demonstriert das. Zusätzlich wird halbüberwachtes Training von Multilayer Perceptrons (MLPs) für die Interpolation von Korngrößenverteilungen vorgestellt, das verbesserte Eingabedaten liefern kann. (iv) Kann man DL-Modellen beibringen, Klimaextreme besser abzuschätzen? Zu diesem Zweck wird eine dichtebasierte Gewichtung für unbalancierte Regression (DenseLoss) vorgeschlagen und auf die DL-Architektur ConvMOS angewendet, um die Schätzung von Klimaextremen zu verbessern. Diese Methoden zeigen, wie speziell DL-Techniken für Umwelt-ML-Aufgaben unter Berücksichtigung ihrer besonderen Eigenschaften entwickelt werden können. Dies ermöglicht bessere Modelle als konventionelles ML bisher erlaubt hat, was zu einer genaueren Bewertung und einem besseren Verständnis des Zustands unserer Umwelt führt.
147

Spatio-temporal information system for the geosciences: concepts, data models, software, and applications

Le, Hai Ha 20 October 2014 (has links)
The development of spatio–temporal geoscience information systems (TGSIS) as the next generation of geographic information systems (GIS) and geoscience information systems (GSIS) was investigated with respect to the following four aspects: concepts, data models, software, and applications. These systems are capable of capturing, storing, managing, and querying data of geo–objects subject to dynamic processes, thereby causing the evolution of their geometry, topology and geoscience properties. In this study, five data models were proposed. The first data model represents static geo–objects whose geometries are in the 3–dimensional space. The second and third data models represent geological surfaces evolving in a discrete and continuous manner, respectively. The fourth data model is a general model that represents geo–objects whose geometries are n–dimensional embedding in the m–dimensional space R^m, m >= 3. The topology and the properties of these geo–objects are also represented in the data model. In this model, time is represented as one dimension (valid time). Moreover, the valid time is an independent variable, whereas geometry, topology, and the properties are dependent (on time) variables. The fifth data model represents multiple indexed geoscience data in which time and other non–spatial dimensions are interpreted as larger spatial dimensions. To capture data in space and time, morphological interpolation methods were reviewed, and a new morphological interpolation method was proposed to model geological surfaces evolving continuously in a time interval. This algorithm is based on parameterisation techniques to locate the cross–reference and then compute the trajectories complying with geometrical constraints. In addition, the long transaction feature was studied, and the data schema, functions, triggers, and views were proposed to implement the long transaction feature and the database versioning in PostgreSQL. To implement database versioning tailored to geoscience applications, an algorithm comparing two triangulated meshes was also proposed. Therefore, TGSIS enable geologists to manage different versions of geoscience data for different geological paradigms, data, and authors. Finally, a prototype software system was built. This system uses the client/server architecture in which the server side uses the PostgreSQL database management system and the client side uses the gOcad geomodeling system. The system was also applied to certain sample applications.
148

Mapping, analysis, and interpretation of the glacier inventory data from Jotunheimen, South Norway, since the maximum of the 'Little Ice Age' / Kartierung, Analyse und Interpretation der Gletscherinventardaten von Jotunheimen, Süd-Norwegen, seit dem Maximum der "Kleinen Eiszeit"

Baumann, Sabine Christine January 2009 (has links) (PDF)
Glacier outlines during the ‘Little Ice Age’ maximum in Jotunheimen were mapped by using remote sensing techniques (vertical aerial photos and satellite imagery), glacier outlines from the 1980s and 2003, a digital terrain model (DTM), geomorphological maps of individual glaciers, and field-GPS measurements. The related inventory data (surface area, minimum and maximum altitude) and several other variables (e.g. slope, range) were calculated automatically by using a geographical information system. The length of the glacier flowline was mapped manually based on the glacier outlines at the maximum of the ‘Little Ice Age’ and the DTM. The glacier data during the maximum of the ‘Little Ice Age’ were compared with the Norwegian glacier inventory of 2003. Based on the glacier inventories during the maximum of the ‘Little Ice Age’, the 1980s and 2003, a simple parameterization after HAEBERLI & HOELZLE (1995) was performed to estimate unmeasured glacier variables, as e.g. surface velocity or mean net mass balance. Input data were composed of surface glacier area, minimum and maximum elevation, and glacier length. The results of the parameterization were compared with the results of previous parameterizations in the European Alps and the Southern Alps of New Zealand (HAEBERLI & HOELZLE 1995; HOELZLE et al. 2007). A relationship between these results of the inventories and of the parameterization and climate and climate changes was made. / Die Gletscherumrisse während des Maximalstandes der „Kleinen Eiszeit“ in Jotunheimen wurden unter der Verwendung von Fernerkundungstechniken (vertikale Luftbilder und Satellitenbilder), von Gletscherumrissen aus den 1980er Jahren und von 2003, von einem digitalen Geländemodel (DTM), von geomorphologischen Karten einzelner Gletscher und von GPS-Messungen im Gelände kartiert. Die daraus erzielten Inventardaten (Gletscherfläche, minimale und maximale Höhe) und einige andere Variablen (z.B. Hangneigung, Höhendifferenz) wurden automatisch mit einem geographischen Informationssystem berechnet. Die Länge der Gletscherfließlinie wurde basierend auf den Gletscherumrissen zum Maximum der „Kleinen Eiszeit“ und dem DTM manuell kartiert. Die Gletscherdaten zum Maximalstand der „Kleinen Eiszeit“ wurden mit dem Gletscherinventar von 2003 verglichen. Basierend auf den letscherinventaren zum Maximum der „Kleinen Eiszeit“, von den 1980er Jahren und von 2003 wurde eine einfache Parametrisierung nach HAEBERLI & HOELZLE (1995) durchgeführt, um ungemessene Gletschervariablen, wie z.B. Oberflächengeschwindigkeit oder mittlere Netto-Massenbilanz, abzuschätzen. Eingabedaten bestanden aus Gletscherfläche, minimaler und maximale Höhe und der Gletscherlänge. Die Resultate der Parametrisierung wurden mit den Ergebnissen früherer Parametrisierungen aus den Europäischen Alpen und den Southern Alps auf Neuseeland verglichen (HAEBERLI & HOELZLE 1995; HOELZLE et al. 2007). Eine Verbindung zwischen diesen Ergebnissen aus den Inventaren und der Parametrisierung und dem Klima und der Klimaänderung wurde hergestellt.
149

Der Aufwand lohnt sich

Walz, Ulrich, Leibenath, Markus, Csaplovics, Elmar 23 January 2013 (has links) (PDF)
Ökosysteme und die Lebensräume seltener Tier- und Pflanzenarten machen nicht an Staatsgrenzen halt. Grenzgebiete sind aufgrund ihrer peripheren Lage, dünnen Besiedlung und charakteristischen Naturräume wie Flüsse oder Gebirge oft sogar besonders reich an schützenswerten Landschaften. In grenzüberschreitenden Großschutzgebieten ist es erforderlich, auch die Tätigkeit der Schutzgebietsverwaltungen grenzüberschreitend zu koordinieren, um die Kohärenz der Schutzbemühungen sicherzustellen. In der Nationalparkregion Sächsisch-Böhmische Schweiz sammeln die Verantwortlichen auf deutscher und tschechischer Seite Erfahrung in einem gemeinsamen Projekt.
150

Methodische Ansätze zur Erfassung von Waldbäumen mittels digitaler Luftbildauswertung / Methods for the assessment of forest trees using digital aerial photographs

Fuchs, Hans-Jörg 13 November 2003 (has links)
No description available.

Page generated in 0.2485 seconds