• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 59
  • 59
  • 16
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Identificação e estrutura algebrica das superficies compactas com e sem bordos, provenientes de mergulhos de canais discretos sem memorias

Lima, João de Deus 01 August 2018 (has links)
Orientador : Reginaldo Palazzo Jr / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-01T04:51:55Z (GMT). No. of bitstreams: 1 Lima_JoaodeDeus_D.pdf: 3354461 bytes, checksum: c93657cbd0b748b5ea917455df9e8991 (MD5) Previous issue date: 2002 / Doutorado
42

Sobre o numero de soluções de equações polinomiais em corpos finitos / On the number of solutions of polynomial equations on finite fields

Veloso, Marcelo Oliveira 16 February 2005 (has links)
Orientador: Paulo Roberto Brumatti / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T02:10:19Z (GMT). No. of bitstreams: 1 Veloso_MarceloOliveira_M.pdf: 605567 bytes, checksum: 5882cdcae8b9c04096f915755c89a683 (MD5) Previous issue date: 2005 / Resumo: O objetivo principal deste trabalho é o estudo do número de soluções de equações polinomiais definidas sobre corpos finitos. Para isto utilizamos resultados básicos sobre a soma de Caracteres e resultados sobre o número de soluções de uma Forma Quadrática. Na nossa abordagem procuramos utilizar técnicas bem elementares, apesar disto implicar num número maior de cálculos. Contudo este método permitiu estudar e determinar fórmulas para o número de soluções de determinadas equações polinomiais muito estudadas, sem a necessidade de ferramentas mais elaboradas. Dentre as aplicações das fórmulas obtidas, temos alguns exemplos de curvas algébricas planas cujo número de pontos racionais atingem a cota de Weil, ou seja, curvas maximais que são de grande interesse em teoria dos códigos. Também conseguimos exemplos de variedades projetivas sobre corpos finitos cujo número de pontos atingem a cota de Weil-Deligne / Abstract: The main objective of this work is to study the number of solutions of polynomial equations over finite fields. For that we used basic results on Character sums and on the number of solutions of a Quadratic Form. This approach uses elementary techniques even considering the increasing on computations. Therefore this method allowed us to study and determine formulae for the number of solutions of certain polynomial equations well known, without the need of more sophisticated tools. Among the applications of the obtained formulae, we have some examples of plane algebraic curves which number of rational points achieve the Weil bound, that is, maximal curves which are of great interest in code theory. In addition, other examples were obtained of projective manifolds over finite fields which number of points achieve the Weil-Deligne bound / Mestrado / Algebra / Mestre em Matemática
43

Explorando as definições de cônicas /

Garcia, João Calixto. January 2013 (has links)
Orientador: Vanderlei Marcos do Nascimento / Banca: Suzinei Aparecida Siqueira Marconato / Banca: Karina Schiabel Silva / O PROFMAT - Programa de Mestrado Profissional em Matemática em Rede Nacional é coordenado pela Sociedade Brasileira de Matemática e realizado por uma rede de Instituições de Ensino Superior / Resumo: Neste trabalho exploramos as definições mais usuais de cônicas, em duas direções. Uma delas trata da equivalência entre tais definições; a outra trata de estabelecer propriedades das figuras então definidas, em uma sequência natural que valoriza o pensamento geométrico / Abstract: In this work we explore the most usual definitions of the conics, in two directions. One of them deals with the equivalence of the definitions themselves; the other one looks for properties of the figures just defined, stated in a natural sequence that enrichs the geometric thought / Mestre
44

O problema de cobertura via geometria algébrica convexa / The covering problem via convex algebraic geometry

Leonardo Makoto Mito 01 March 2018 (has links)
Este trabalho é focado num problema clássico das Ciências e Engenharia, que consiste em cobrir um objeto por esferas de mesmo raio, a ser minimizado. A abordagem prática usual conta com sérias desvantagens. Logo, faz-se necessário trabalhar com isto de forma diferenciada. A técnica proposta aqui envolve a utilização de resultados célebres da geometria algébrica real, que tem como peça central o positivstellensatz de Stengle e, fazendo a devida relação entre esses resultados e otimização com restrições envolvendo representações naturais por somas de quadrados, é possível reduzir o problema original a um de programação semidefinida não linear. Mas, por contar com particularidades que favorecem a aplicação do paradigma de restauração inexata, esta foi a técnica utilizada para resolvê-lo. A versatilidade da técnica e a possibilidade de generalização direta dos objetos envolvidos destacam-se como grandes vantagens desta abordagem, além da visão algébrica inovadora do problema. / This work is focused on a classic problem from Engineering. Basically, it consists of finding the optimal positioning and radius of a set of equal spheres in order to cover a given object. The common approach to this carries some substantial disadvantages, what makes it necessary to nd a dierent way. Here, we explore some renowned results from real algebraic geometry, which has Stengle\'s positivstellensatz as one of its central pieces, and SOS optimization. Once the proper link is made, the original problem can be reduced to a nonlinear semidenite programming one, which has peculiarities that favours the application of an inexact restoration paradigm. We point out the algebraic view and the no use of discretizations as great advantages of this approach, besides the notable versatility and easy generalization in terms of dimension and involved objects.
45

O problema de cobertura via geometria algébrica convexa / The covering problem via convex algebraic geometry

Mito, Leonardo Makoto 01 March 2018 (has links)
Este trabalho é focado num problema clássico das Ciências e Engenharia, que consiste em cobrir um objeto por esferas de mesmo raio, a ser minimizado. A abordagem prática usual conta com sérias desvantagens. Logo, faz-se necessário trabalhar com isto de forma diferenciada. A técnica proposta aqui envolve a utilização de resultados célebres da geometria algébrica real, que tem como peça central o positivstellensatz de Stengle e, fazendo a devida relação entre esses resultados e otimização com restrições envolvendo representações naturais por somas de quadrados, é possível reduzir o problema original a um de programação semidefinida não linear. Mas, por contar com particularidades que favorecem a aplicação do paradigma de restauração inexata, esta foi a técnica utilizada para resolvê-lo. A versatilidade da técnica e a possibilidade de generalização direta dos objetos envolvidos destacam-se como grandes vantagens desta abordagem, além da visão algébrica inovadora do problema. / This work is focused on a classic problem from Engineering. Basically, it consists of finding the optimal positioning and radius of a set of equal spheres in order to cover a given object. The common approach to this carries some substantial disadvantages, what makes it necessary to nd a dierent way. Here, we explore some renowned results from real algebraic geometry, which has Stengle\'s positivstellensatz as one of its central pieces, and SOS optimization. Once the proper link is made, the original problem can be reduced to a nonlinear semidenite programming one, which has peculiarities that favours the application of an inexact restoration paradigm. We point out the algebraic view and the no use of discretizations as great advantages of this approach, besides the notable versatility and easy generalization in terms of dimension and involved objects.
46

Semigrupo de Weierstrass e códigos AG bipontuais / Semigrupo de Weierstrass e códigos bipontuais

Souza, Wagner Dias Alves de 30 March 2017 (has links)
FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Neste trabalho, estudamos conceitos de geometria algébrica relacionados a teoria de códigos de Goppa algebricos geometricos (códigos AG). Vimos como o cálculo do semi- grupo de Weierstrass pode ser aplicado na obtencao dos parâmetros de certos cádigos AG. Em particular, calculamos o semigrupo de Weierstrass em dois pontos da curva Xq2r dada pela equacao afim yq + y = xq+1 sobre Fq2r, onde r e um inteiro positivo ímpar e q á uma potencia de um numero primo, e construímos um cádigo AG bipontual sobre Xq2r, cujos parâmetros relativos sao melhores que cádigos AG pontuais comparâveis tambem construídos sobre esta curva. A principal referencia deste trabalho foi [8]. / In this work we study basics concepts of the algebraic geometry related to Algebraic Geometric Goppa codes theory (AG codes). We have seen how the calculation of the Weierstrass semigroup can be applied in obtaining the parameters of certain AG codes. In particular, we calculated the Weierstrass semigroup at two points on the curve Xq2r defined by afim equation yq + y = xq +1 over Fq2r, where r is a positive odd integer and q is a prime power, and construct a two-point AG code over Xq2r whose relative parameters are better than comparable one-point AG code. The main reference of this work was [8]. / Dissertação (Mestrado)
47

A conjectura de Zariski para a multiplicidade

Carvalho, Emílio de 24 June 2010 (has links)
Made available in DSpace on 2016-06-02T20:28:25Z (GMT). No. of bitstreams: 1 3184.pdf: 615801 bytes, checksum: 5d8654ee242eff8f78e530be4b12eaf5 (MD5) Previous issue date: 2010-06-24 / Financiadora de Estudos e Projetos / In his retiring Presidential address to the American Mathematical Society in 1971, Zariski proposed some questions in the Theory of Singularities. One of them concerns the topological invariance of the multiplicity of complex hypersurfaces. In more accurate terms, Zariski asked: if two complex hypersurfaces are homeomorphic as embedded varieties, then are their multiplicities at the origin the same? The multiplicity of a complex hypersurface at the origin is the number of points of intersection of the hypersurface with a generic complex line passing close to the origin, but not through it. The problem still remains unsolved. However, there are some special cases which were answered affirmatively, such as the case of homeomorphic hypersurfaces by a bilipschitz homeomorphism. This work aims at understanding the main results settled for the problem. In the present dissertation, we will make a precise concept of multiplicity of a complex hypersurface and we will give special emphasis to C1-invariance of the multiplicity, bilipschitz invariance and quasihomogeneous hypersurfaces. Besides having great importance by themselves, these cases bring their own interpretations of multiplicity helping us to understand better such an object. / Em seu discurso de saída da presidência da Sociedade Americana de Matemática em 1971, Zariski propôs algumas questões na Teoria de Singularidades. Uma delas diz respeito `a invariância topológica da multiplicidade de hipersuperfícies complexas. Em termos mais precisos, Zariski perguntou: se duas hipersuperfícies complexas são homeomorfas como variedades imersas, então suas multiplicidades na origem são as mesmas? A multiplicidade de uma hipersuperfície complexa na origem é o número de pontos de interseção da hipersuperfície com uma reta complexa genérica passando próximo da origem, mas não por ela. O problema permanece ainda sem solução. Entretanto, existem alguns casos especiais que foram respondidos afirmativamente, tais como o caso de hipersuperfícies homeomorfas por um homeomorfismo bilipschitz. Este trabalho tem por objetivo compreender os principais resultados estabelecidos para o problema. Na presente dissertação, faremos um conceito preciso de multiplicidade de uma hipersuperfície complexa e daremos ênfase especial `a C1-invariância da multiplicidade, `a invariância bilipschitz e `as hipersuperfícies quase homogêneas. Além de terem grande importância por si só, estes casos trazem suas próprias interpretações de multiplicidade, ajudando-nos a compreender melhor tal objeto.
48

Hipersuperfícies invariantes em dinâmica complexa / Invariant hypersurfaces in complex dynamics.

Reis, Vinícius Soares dos 17 February 2012 (has links)
Made available in DSpace on 2015-03-26T13:45:34Z (GMT). No. of bitstreams: 1 texto completo.pdf: 519967 bytes, checksum: bd1af6c8f1b6386794e796434e97115c (MD5) Previous issue date: 2012-02-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / We talk about versions the theorem of integrability Darboux - Jouanolou for endomorphisms, fields, or r-polynomial differential forms. These versions say essentially that there are infinitely many algebraic hypersurfaces invariant if and only if the dynamical system in question preserves a pencil of hypersurfaces. / Dissertamos sobre versões do teorema de integrabilidade de Darboux - Jouanolou para endomorfismos, campos ou r-formas diferenciais polinomiais. Tais versões dizem essencialmente que existem infinitas hipersuperfícies algébricas invariantes se, e somente se, o sistema dinâmico em questão preserva um pencil de hipersuperfícies.
49

Sobre o numero de pontos racionais de curvas sobre corpos finitos / On the number of rational points of curves over finite fields

Castilho, Tiago Nunes, 1983- 19 March 2008 (has links)
Orientador: Fernando Eduardo Torres Orihuela / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T15:12:25Z (GMT). No. of bitstreams: 1 Castilho_TiagoNunes_M.pdf: 813127 bytes, checksum: 313e9951b003dcd0e0876813659d7050 (MD5) Previous issue date: 2008 / Resumo: Nesta dissertacao estudamos cotas para o numero de pontos racionais de curvas definidas sobre corpos finitos tendo como ponto de partida a teoria de Stohr-Voloch / Abstract: In this work we study upper bounds on the number of rational points of curves over finite fields by using the Stohr-Voloch theory / Mestrado / Algebra Comutativa, Geometria Algebrica / Mestre em Matemática
50

Codigos geometricos de Goppa via metodos elementares / Goppa geometry codes via elementary methods

Melo, Nolmar 17 February 2006 (has links)
Orientadores: Paulo Roberto Brumatti, Fernando Eduardo Torres Orihuela / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-05T23:44:44Z (GMT). No. of bitstreams: 1 Melo_Nolmar_M.pdf: 705654 bytes, checksum: b8ecfe0cc3ffd2dd2f63bc813a9c4a8d (MD5) Previous issue date: 2006 / Resumo: O objetivo central desta dissertação foi o de apresentar os Códigos Geométricos de Goppa via métodos elementares que foram introduzidos por J. H. van Lint, R. Pellikaan e T. Hfhold por volta de 1998. Numa primeira parte da dissertação são apresentados os conceitos fundamentais sobre corpos de funções racionais de uma curva algébrica na direção de se definir os códigos de Goppa de maneira clássica, neste estudo nos baseamos principalmente no livro ¿Algebraic Function Fields and Codes¿ de H. Stichtenoth. A segunda parte inicia-se com a introdução dos conceitos de funções peso, grau e ordem que são fundamentais para o estudo dos Códigos de Goppa via métodos elementares de álgebra linear e de semigrupos, tal estudo foi baseado em ¿Algebraic geometry codes¿ de J. H. van Lint, R. Pellikaan e T. Hfhold.A dissertação termina com a apresentação de exemplos que ilustram os métodos elementares que nos referimos acima / Abstract: The central objective of this dissertation was to present the Goppa Geometry Codes via elementary methods which were introduced by J. H. van Lint, R. Pellikaan and T. Hfhold about 1998. On the first past of such dissertation are presented the fundamental concepts about fields of rational functions of an algebraic curve in the direction as to define the Goppa Codes on a classical manner. In this study we based ourselves mainly on the book ¿Algebraic Function Fields and Codes¿ of H. Stichtenoth. The second part is initiated with an introduction about the functions weight, degree and order which are fundamental for the study of the Goppa Codes throught elementary methods of linear algebra and of semigroups and such study was based on ¿Algebraic Geometry Codes¿ of J. h. van Lint, R. Pellikaan and T. Hfhold. The dissertation ends up with a presentation of examples which illustrate the elementary methods that we have referred to above / Mestrado / Algebra / Mestre em Matemática

Page generated in 0.0694 seconds