• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effiziente Lösung reeller Polynomialer Gleichungssysteme

Mbakop, Guy Merlin 24 September 1999 (has links)
Diese Arbeit beinhaltet {\it geometrische Algorithmen} zur L\"osung reeller polynomialer Gleichungssysteme mit rationalen Koeffizienten, wobei die Polynome eine reduzierte regul\"are Folge bilden (vgl. Abschnitt \ref{abschgeo}). Unter reellem L\"osen verstehen wir hier die Bestimmung eines Punktes in jeder Zusammenhangskomponente einer kompakten glatten reellen Variet\"at $V:=W \cap \R^n$.\\ Im Mittelpunkt steht die Anwendung des f\"ur den algebraisch abgeschlossenen Fall ver\"offentlichten symbolischen geometrischen Algorithmus nach \cite{gh2} und \cite{gh3}. Die Berechenungsmodelle sind {\em Straight--Line Programme} und {arithmetische Netzwerke} mit Parametern in $\; \Q$. Die Input--Polynome sind durch ein Straight--Line Programm der Gr\"o{\ss}e $L$ gegeben. Eine geometrische L\"osung des Input--Glei\-chungs\-sys\-tems besteht aus einem primitiven Element der Ringerweiterung, welche durch die Nullstellen des Systems beschrieben ist, aus einem mininalen Polynom dieses primitiven Elements, und aus den Parametrisierungen der Koordinaten. Diese Darstellung der L\"osung hat eine lange Geschichte und geht mindestens auf Leopold Kronecker \cite{kron} zur\"uck. Die Komplexit\"at des in dieser Arbeit begr\"undeten Algorithmus erweist sich als linear in $L$ und polynomial bez\"uglich $n, d, \delta$ bzw. $\delta \;'$, wobei $n$ die Anzahl der Variablen und $d$ eine Gradschranke der Polynome im System ist. Die Gr\"o{\ss}en $\delta$ und $\delta \; '$ sind geometrische Invarianten, die das Maximum der {\em Grade des Inputsystems} und geeigneter {\em polarer Variet\"aten} repr\"asentieren (bzgl. des ({\em geometrischen}) Grades vgl. \cite{he}). Die Anwendung eines Algorithmus \"uber den komplexen Zahlen auf das L\"osen von polynomialen Gleichungen im Reellen wird durch die Einf\"urung polarer Variet\"aten m\"oglich (vgl. \cite{bank}). Die polaren Variet\"aten sind das Kernst\"uck und das vorbereitende Werzeug zur effizienten Nutzung des oben erw\"ahnten geometrischen Algorithmus. Es wird ein inkrementelles Verfahren zur Auffindung reeller Punkte in jeder Zusammenhangskomponente der Nullstellenmenge des Inputsystems abgeleitet, welches einen beschr\"ankten glatten (lokalen) vollst\"andigen Durchschnitt in $\R^n$ beschreibt. Das Inkrement des Algorithmus ist die Kodimension der polaren Variet\"aten. Die Haupts\"atze sind Satz $\ref{theorem12}$ auf Seite $\pageref{theorem12}$ f\"ur den Hyperfl\"achenfall, und Satz $\ref{theoresult}$ auf Seite $\pageref{theoresult}$, sowie die Aussage in der Einf\"uhrung dieser Arbeit, Seite $\pageref{vollres}$ f\"ur den vollst\"andigen Durchschnitt. / This dissertation deals with {\em geometric algorithms} for solving real multivariate polynomial equation systems, that define a reduced regular sequence (cf. subsection $\ref{abschgeo}$). Real solving means that one has to find at least one real point in each connected component of a real compact and smooth variety $V := W \cap \R^n$. \\ The main point of this thesis is the use of a complex symbolic geometric algorithm, which is designed for an algebraically closed field and was published in the papers \cite{gh2} and \cite{gh3}. The models of computation are {\em straight--line programms} and {\em arithmetic Networks} with parameters in $\; \Q$. Let the polynomials be given by a division--free straight--line programm of size $L$. A geometric solution for the system of equations given by the regular sequence consists in a {\em primitiv element} of the ring extension associated with the system, a minimal polynomial of this primitive element and a parametrization of the coordinates. This representation has a long history going back to {\em Leopold Kronecker} \cite{kron}. The time--complexity of our algorithms turns out to be linear in $L$ and polynomial with respect to $n, d, \delta$ or $\delta '$, respectively. Here $n$ denotes the number of variables, $d$ is an upper bound of the degrees of the polynomials involved in the system, $\delta$ and $\delta '$ are geometric invariants representing the maximum of the {\em affine (geometric) degree} of the system under consideration and the affine (geometric) degree of suitable {\em polar varieties} (cf. \cite{he} for the ({\em geometric}) degree). The application of an algorithm running in the complex numbers to solve polynomial equations in the real case becomes possible by the introduction of polar varieties (cf. \cite{bank}). The polar varieties introduced for this purpose prove to be the corner--stone and the preliminary tool for the efficient use of the geometric algorithm mentioned above. An incremental algorithm is designed to find at least one real point on each connected component of the zero set defined by the input under the assumption that the given semialgebraic set $V = W \cap \R^n$ is a bounded, smooth (local) complete intersection manifold in $\R^n$. The increment of the new algorithm is the codimension of the polar varieties under consideration. The main theorems are Theorem $\ref{theorem12}$ on page $\pageref{theorem12}$ for the hypersurface case, and Theorem $\ref{theoresult}$ on page $\pageref{theoresult}$ for the complete intersection as well as the statement in the introduction of this thesis on page $\pageref{vollres}$.

Page generated in 0.0675 seconds