• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 31
  • 21
  • 19
  • 10
  • 7
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 321
  • 63
  • 63
  • 53
  • 48
  • 42
  • 40
  • 39
  • 39
  • 34
  • 34
  • 34
  • 33
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Connections Between the Mass Balance, Ice Dynamics, and Hypsometry of White Glacier, Axel Heiberg Island, Nunavut

Thomson, Laura Irene January 2016 (has links)
This thesis investigates how changing climate conditions have impacted the mass balance, dynamics and associated hypsometry (area-elevation distribution) of White Glacier, an alpine glacier on Axel Heiberg Island, Nunavut. The first article describes the production of a new map of White Glacier from which changes in ice thickness and glacier hypsometry could be determined. A new digital elevation model (DEM) was created using >400 oblique air photos and Structure from Motion, a method built upon photogrammetry but with the advantage of automated image correlation analysis. The result of this work demonstrates that the method is able to overcome the challenges of optical remote sensing in snow-covered areas. The resulting DEM and orthoimage facilitated the production of a map with 5 m vertical accuracy in the style of earlier cartographic works. The new map supported the calculation of the glacier’s geodetic mass balance and provides an updated glacier hypsometry, which improves the accuracy of mass balance calculations. A modeled glacier hypsometry time-series was created to support a reanalysis of the mass balance record over the period 1960-2014, which through comparison of the geodetic and glaciological methods enables the detection of potential sources of error in the glaciological method. Comparison of the two approaches reveals that within the error margin no significant difference exists between the average annual glaciological mass balance (-213 ± 28 mm w.e. a 1) and geodetic mass balance ( 178 ± 16 mm w.e. a-1). To determine how ice dynamics have responded to ice thinning and negative mass balances, dual-frequency GPS observations of ice motion were compared to historic velocity measurements collected at three cross-sectional profiles along the glacier. Comparisons of annual and seasonal velocities indicate velocity decreases of 10–45% since the 1960s. However, increased summer velocities at the highest station suggests that increased delivery of surface meltwater to the glacier bed has initiated basal sliding at elevations that did not experience high levels of melt in earlier decades. Modeled balance fluxes demonstrate that observed fluxes, both historically and currently, are unsustainable under current climate conditions.
112

Gravity and temperature measurements on the Fox Glacier, Yukon

Crossley, David John January 1969 (has links)
During the summer of 1968 a gravity survey was conducted over the Fox* Glacier, Yukon Territory, for the purpose of finding ice depths. Choice of the Fox Glacier was as a result of its predicted surge, and the survey was part of a long-term analysis of the physical condition of the glacier. Although seismic sounding was attempted, the thinness of the glacier prevented successful results. Analysis of the gravity measurements indicated 88m as the maximum depth; comparison with depths from three drilled holes showed that the gravity results were not seriously in error. A small near-surface temperature program was completed and the results identify the Fox as a sub-polar glacier. *This is not an officially accepted name. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
113

Modelling Sea-Level Fingerprints of Glaciated Regions with Low Mantle Viscosity

Bartholet, Alan 20 April 2020 (has links)
Sea-level fingerprints, the spatial patterns of sea level change resulting from rapid melting of glaciers and ice sheets, play an important role in understanding past and projecting future changes in relative sea level (RSL). Over century timescales, the viscous flow of Earth’s interior is a small component of the total deformation due to ice loading in most regions, so fingerprints computed using elastic Earth models are accurate. However, in regions where the viscosity is orders of magnitude lower than the global average, the viscous component of deformation can be significant, in which case it is important to consider models of viscoelastic deformation. There is evidence that the glaciated regions of Alaska, Western Canada and USA, and the Southern Andes are situated on top of mantle regions in which the local viscosity is several orders of magnitude lower than typical global mean values. The goal of this work is to determine the importance of viscous flow in computing RSL fingerprints associated with future ice mass loss from these regions. Version 5.0 of the Randolph Glacier Inventory is used to estimate the ice load distribution required for calculating sea-level fingerprints. For the glaciated regions that have lower than average viscosity, fingerprints were calculated using an elastic Earth model and a 3D viscoelastic model to quantify the influence of viscous flow on the predicted sea level changes. Using glacier mass loss values for the intermediate future climate scenario Representative Concentration Pathway (RCP) 4.5, the global sea level response was computed at 2100 CE relative to 2010 CE due to melting from all glacier regions. On comparing the results of the two models it was found that ice-load-induced viscous flow contributes significantly (more than a few cm) to the RSL fingerprints only in near-field regions. However, in these regions, the non-elastic contribution can be 10s of cm. For example, at Juneau, USA the elastic calculation gave relative sea level changes of ∼ −45 cm, compared to ∼ −120 cm based on the viscoelastic calculation.
114

A Multi-Decadal Remote Sensing Study on Glacial Change in the North Patagonia Ice Field Chile

Tetteh, Lucy Korlekwor 17 May 2014 (has links)
Glaciers in the North Patagonian Ice Fields are temperate glaciers and can be studied to understand the dynamics of climate change. However, the ice field has been neglected in mass balance studies. In this study, multi decadal study of glacial mass balance, glacier retreat and glacial lake expansion in the North Patagonia were studied. Landsat (TM, ETM+ and 8) and ASTER images were used. San Quintin glacier experienced the highest retreat. Demarcation of glacier lakes boundaries indicated an increase in glacial lake area from 13.49 km2 to 65.06 km2 between 1979 and 2013, with an addition of 4 new glacial lakes. Nef glacier recorded the highest mass gain of 9.91 plus or minus 1.96 m.w.e.a.-1 and HPN-4 glacier recorded the highest mass loss of -8.9 plus or minus 1.96 m.w.e.a.-1. However, there is a high uncertainty in the elevation values in the DEM due to the rugged nature of the terrain and presence of the heavy snow cover.
115

Quantification of glacier melt volume in the Indus River watershed

Asay, Maria Nicole 07 December 2011 (has links) (PDF)
Quantifying the contribution of glaciers to water resources is particularly important in locations where glaciers may provide a large percentage of total river discharge. In some remote locations, direct field measurements of melt rates are difficult to acquire, so alternate approaches are needed. Positive degree-day modeling (PDD) of glacier melt is a valuable tool to making first order approximations of the volume of melt coming from glaciers. In this study, a PDD-melt model is applied to glaciers in the Indus River watershed located in Afghanistan, China, India, and Pakistan. Here, millions of people rely on the water from the Indus River, which previous work suggests may be heavily dependent on glacier melt from high mountain regions in the northern part of the watershed. In this region, the PDD melt model calculates the range of melt volumes from more than 45,000 km2 of glaciated area. It relies on a limited suite of input variables for glaciers in the region: elevation, temperature, temperature lapse rate, melt factor, and surface area. Three global gridded climate datasets were used to determine the bounds of temperature at each glacier: UEA CRU CL 2.0, UEA CRU TS 2.1, and NCEP/NCAR 40 year reanalysis. The PDD melt model was run using four different melt scenarios: mean, minimum, maximum, and randomized. These scenarios account for differences in melt volume not captured by temperature, and take uncertainties in all input parameters into account to bound the possible melt volume. The spread in total melt volume from the model scenarios ranges between 27 km3 and 439 km3. While the difference in these calculations is large, it is highly likely the real value falls within this range. Importantly, even the smallest model volume output is a significant melt water value. This suggests that even when forcing the absolute smallest volume of melt, the glacier contribution to the Indus watershed is significant. In addition to providing information about melt volume, this model helps to highlight glaciers with the greatest contribution to total melt. Despite differences in the individual climate models, the spatial pattern in glacier melt is similar, with glaciers contributing the majority of total melt volume occurring in similar geographic regions regardless of which temperature dataset is used. For regions where glacier areas are reasonably well-constrained, contributions from individual glaciers can be quantified. Importantly, less than 5% of glaciers contribute at least 70% of the total melt volume in the watershed. The majority of these glaciers are in Pakistan, the region with the largest percentage of known glaciers with large surface areas at lower elevations. In addition to calculating current melt volumes over large glaciated areas, this model can also be used to determine future melt rates under differing climate scenarios. By applying suggested future regional temperature change to the temperature data, the impact on average melt rate over the watershed was found to increase from 3.02 m/year to 4.69 m/year with up to 2 °C temperature increase. Assuming glacier area remains relatively constant over short time periods, this would amount to a 145 km3 increase in melt volume.
116

APPLICATIONS OF IN SITU 14C TO GLACIAL LANDSCAPES IN SWEDEN AND ANTARCTICA

Alexandria Koester (12871904) 29 April 2023 (has links)
<p>  </p> <p>Reconstructing past glacier and ice-sheet extents is important to better understand how glacial systems have responded to past climate changes in hope of constraining predictions of their responses to ongoing anthropogenic climate warming. As such, the most recent period of climatic variations, from the Last Glacial Maximum (LGM, ca. 21 ka) through today, is of great interest as a prominent example of how ice has reacted to past climatic warming events. Surface exposure dating utilizing cosmogenic nuclides can directly constrain when past ice deglaciated in current and former glacial landscapes. Numerous studies have utilized long-lived cosmogenic radionuclides (i.e., 10Be, 26Al) in polar regions to reconstruct glacial systems. However, due to prevalent non-erosive cold-based ice, prior nuclides from pre-LGM can be preserved. </p> <p>The research described in this dissertation applies <em>in situ </em>cosmogenic 14C (<em>in situ</em> 14C), an emerging geochronometer, to polar glacial landscapes in Sweden and Antarctica to constrain the timing and rate of glacial ice retreat. <em>In situ </em>14C more closely reflects the post-LGM deglacial signal in polar regions because it is less likely to preserve prior nuclides (inheritance) under minimally erosive ice. Our cosmogenic 10Be–26Al–14C concentrations near the Riukojietna ice cap, the last remaining ice cap in Sweden, combined with a sedimentary record from a proximal proglacial lake, indicate the ice cap likely survived during a warm period in the Holocene, but was less extensive than today. The <em>in situ</em> 14C exposure data from nunataks in western Dronning Maud Land (DML), East Antarctica indicate significant coastal thickening (up to 850 m) not predicted by models to date. In addition, this work dates the timing of post-LGM ice surface lowering in two drainage basins in western DML. These results demonstrate the significant contribution of <em>in situ</em> 14C in polar regions.</p> <p>In addition to applications of <em>in situ</em> 14C in polar regions, this work also describes the development of a compositionally dependent <em>in situ</em> 14C production rate calculator. The ability to extract <em>in situ</em> 14C from samples which quartz cannot be separated (either quartz-poor or fine-grained) would allow new avenues of research. The computational framework will be a useful tool in efforts to broaden the utility of <em>in situ</em> 14C to quartz-poor and fine-grained rock types. </p>
117

The Phylogeography of Marstonia Lustrica: Understanding the Relationship Between Glaciation and the Evolution and Distribution of a Rare Snail

Coote, Thomas W 13 May 2011 (has links)
Marstonia lustrica is a poorly understood aquatic snail, relatively rare throughout its range and listed in the State of Massachusetts as Endangered (MNHESP 2010, Hershler et. al 1987). It is the northern-most cold temperate species of its genus, with other members of the genus occurring along the southern edge of its range and in the southeastern United States (Thompson 1977). The current range of M. lustrica appears to follow the maximum extent of the Laurentide Glacier (20–25 kya), extending from Minnesota to western Massachusetts. Research regarding the distribution, ecology, and phylogeny of M. lustrica in the State of Massachusetts and eastern New York raised the possible role of glaciers and pro-glacial lakes in the establishment and distribution of the snail, leading to the hypothesis that its distribution and evolution may be dependent upon glacial processes. A full range survey was completed in 2007 and 2008, with populations identified in 20 water bodies from Minnesota to Massachusetts, and Ohio to Ontario, Canada. Fifty-seven specimens from the 20 populations were sequenced for two mtDNA markers (COI and NDI), developing both phylogenetic trees and haplotype networks. Here I present those trees and networks, and correlate the distribution of these populations and their representative haplotypes with both glacial events and contemporary watersheds, using AMOVAs and Mantel tests to examine several v phylogeographic models. In addition to the results for M. lustrica, the unexpected occurrence of several other species of Marstonia spp. found across the range of M. lustrica are presented, including M. pachyta, M. comalensis, and M. hershleri.
118

Glacier change assessment of the Columbia Icefield in the Canadian Rocky Mountains, Canada (1985 – 2018)

Intsiful, Adjoa Dwamena 01 May 2020 (has links)
Glaciers adjust their sizes as a response to changing climatic conditions which make them a good indicator of climate change. Remote-sensing based glacier monitoring provides a robust way to inventory the health of glaciers and are estimated as a measure of changes in their area, length, volume and mass balance over a period. This research uses remote sensing methods to map glacier extents from satellite images and explores the efficacy of three machine learning algorithms for accurate glacier classification. The results indicated that the Columbia icefield lost 42 km2 of its area cover between 1985 and 2018. It was observed that smaller glaciers lost more of their area at a faster pace than larger ones. Change analysis showed the Columbia glacier experienced the highest area loss (-5.62 km2) and retreat (-3.37 km) while the Athabasca glacier recorded the highest mass ice lose (-2.54 m w.e.) over the study period.
119

Late-Holocene Chronology of the Istorvet Ice Cap, Liverpool Land, East Greenland

Honsaker, William M. 16 August 2011 (has links)
No description available.
120

Satellite mapping and automated feature extraction: geographic information system-based change detection of the Antarctic coast

Kim, Kee-Tae 27 April 2004 (has links)
No description available.

Page generated in 0.2127 seconds