• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 60
  • 17
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 179
  • 36
  • 25
  • 23
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Les Glycosaminoglycannes : nouveaux régulateurs de l’agrégation de l’α-synucléine et de l’apoptose dans un modèle cellulaire de la maladie de Parkinson / Glycosaminoglycannes : new regulator of apoptosis and α-synuclein aggregation in a cellular model of Parkinson disease

Lehri-Boufala, Sonia 12 December 2011 (has links)
Les Glycosaminoglycannes (GAGs) sont une famille de polysaccharides principalement localisés au niveau de la matrice extracellulaire et de la membrane plasmique. Ils peuvent interagir avec des facteurs de croissance et des cytokines pour réguler leurs activités, participer à des transports protéiques à travers la membrane cellulaire, moduler les activités de certaines enzymes telles que les cathepsines (enzymes lysosomales). Toutes ces activités démontrent que les GAGs jouent des rôles primordiaux dans la régulation de la croissance, la différenciation, l'adhésion, l'inflammation et la mort cellulaire.L'implication de ces polysaccharides dans la régulation de l'apoptose via la voie mitochondriale n'a toujours pas été déterminée. Ici, nous démontrons dans un modèle cellulaire de fibroblastes de peau en culture primaire, soumis à un stress oxydatif par de l'H2O2, qu'un mimétique des GAGs, l'OTR4120, est capable de protéger la membrane du lysosome, de réduire le taux de ROS intracellulaires et d'inhiber la chute du potentiel de membrane mitochondrial et ainsi d'empêcher la libération du cytochrome c et l'activation des activités caspases-9 et -3 sans affecter la voie extrinsèque de l'apoptose. Les héparanes sulfates et les chondroïtines sulfates au contraire de l'héparine, ont montré un effet protecteur de l'apoptose en inhibant les protéines clefs de ce processus de mort cellulaire. Ainsi, les GAGs naturels et l'OTR4120 sont capables s'opposer à l'apoptose, en inhibant l'activité de la cathepsine D libérée dans le cytosol, empêchant ainsi l'activation de la voie intrinsèque de l'apoptose via la mitochondrie. Ces résultats ouvrent de nouveaux horizons notamment dans certaines maladies où le stress oxydatif est impliqué comme c'est le cas de certaines maladies neurodégénératives comme la maladie de Parkinson.La cause de la maladie de Parkinson (MP) qui affecte les neurones dopaminergiques demeure encore mystérieuse, bien que différentes preuves soutiennent les hypothèses impliquant des dysfonctionnements mitochondriaux et une accumulation d'α-synucléine comme étant les événements majeurs dans cette physiopathologie. Récemment, la cathepsine D a été impliquée dans des processus de mort cellulaire et montrée comme étant surexprimée dans des modèles de la MP. De plus, apparait être l'une des principales enzymes responsables de la dégradation de l'α-synucléine. Puisque les glycosaminoglycannes (GAGs) sont capables de réguler l'activité de la cathepsine D dans des cellules en culture dans une condition de stress, nous avons cherché à démontrer si GAGs pouvaient être localisés à un niveau intracellulaire, où ils pourraient interagir avec la cathepsine D et s'ils étaient capables de réguler l'accumulation/dégradation de l'α-synucléine. Ainsi nous avons mis en place un modèle cellulaire de la MP induit par le MPP+. Nous avons observé que l'expression génétique des enzymes de la biosynthèse des GAGs (HS2ST, HS6ST et CHST8) a été modifiée dans les cellules stressées par la neurotoxine et que leurs taux mesurés par leurs sulfates étaient augmentés plus précisément au niveau des HS. Au contraire, l'absence de GAGs sulfatés induit par le chlorate de sodium, un inhibiteur de la PAPs (donneur de sulfates), a permis d'augmenter l'activité de l'activité cathepsine D et également d'inhiber l'accumulation ou d'induire la dégradation de l'α-synucléine. Pour la première fois, il a été montré que les GAGs sont capables d'agir sur l'activité cathepsine D à l'intérieur de la cellule et de réguler l'accumulation/dégradation de l'α-synucléine. / Pas de résumé anglais
72

Human lysosomal sulphate transport

Lewis, Martin David. January 2001 (has links) (PDF)
Addendum inserted at back Includes bibliographical references (leaves 266-287). 1. Introduction -- 2. Materials and general methods -- 3. Characterisation and partial purification of the lysosomal sulphate transporter -- 4. Identification of proteins involved in lysosomal sulphate transport -- 5. The relationship between a sulphate anion transporter family and the lysosomal sulphate transporter -- 6. Investigation of sulphate transport in human skin fibroblasts -- 7. Concluding remarks
73

Human lysosomal sulphate transport / Martin David Lewis.

Lewis, Martin D. January 2001 (has links)
Addendum inserted at back / Includes bibliographical references (leaves 266-287). / xxiv, 289 leaves, [2] leaves of plates : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Paediatrics, 2001
74

The expression and regulation of hyaluronan synthases and their role in glycosaminoglycan synthesis

Brinck, Jonas January 2000 (has links)
<p>The glycosaminoglycan hyaluronan is an essential component of the extracellular matrix in all higher organisms, affecting cellular processes such as migration, proliferation and differentiation. Hyaluronan is synthesized by a plasma membrane bound hyaluronan synthase (HAS) which exists in three genetic isoforms. This thesis focuses on the understanding of the hyaluronan biosynthesis by studies on the expression and regulation of the HAS proteins.</p><p>In order to characterize the structural and functional properties of the HAS isoforms we developed a method to solubilize HAS protein(s) while retaining enzymatic activity. The partially purified HAS protein is, most likely, not asscociated covalently with other components. Cells transfected with cDNAs for HAS1, HAS2 and HAS3 were studied and all three HAS isozymes were able to synthesize high molecular weight hyaluronan chains in intact cells. The regulation of the hyaluronan chain length involves cell specific elements as well as external stimulatory factors. HAS3 transfected cells with high hyaluronan production exhibit reduced migration capacity and reduced amounts of a cell surface hyaluronan receptor molecule (CD44) compared to wild-type cells.</p><p>The three HAS isoforms were studied and shown to be differentially expressed and regulated in response to external stimuli. Platelet derived growth factor (PDGF-BB) and transforming growth factor (TGF-<i>β</i>1) are important regulators of HAS at both the transcriptional and translational level. The HAS2 isoform is the isoform most susceptible to external regulation.</p><p>The role of the UDP-glucose dehydrogenase in mammalian glycosaminoglycan biosynthesis was assessed. The enzyme is essential for hyaluronan, heparan sulfate and chondroitin sulfate biosynthesis, but does not exert a rate-limiting effect.</p>
75

The expression and regulation of hyaluronan synthases and their role in glycosaminoglycan synthesis

Brinck, Jonas January 2000 (has links)
The glycosaminoglycan hyaluronan is an essential component of the extracellular matrix in all higher organisms, affecting cellular processes such as migration, proliferation and differentiation. Hyaluronan is synthesized by a plasma membrane bound hyaluronan synthase (HAS) which exists in three genetic isoforms. This thesis focuses on the understanding of the hyaluronan biosynthesis by studies on the expression and regulation of the HAS proteins. In order to characterize the structural and functional properties of the HAS isoforms we developed a method to solubilize HAS protein(s) while retaining enzymatic activity. The partially purified HAS protein is, most likely, not asscociated covalently with other components. Cells transfected with cDNAs for HAS1, HAS2 and HAS3 were studied and all three HAS isozymes were able to synthesize high molecular weight hyaluronan chains in intact cells. The regulation of the hyaluronan chain length involves cell specific elements as well as external stimulatory factors. HAS3 transfected cells with high hyaluronan production exhibit reduced migration capacity and reduced amounts of a cell surface hyaluronan receptor molecule (CD44) compared to wild-type cells. The three HAS isoforms were studied and shown to be differentially expressed and regulated in response to external stimuli. Platelet derived growth factor (PDGF-BB) and transforming growth factor (TGF-β1) are important regulators of HAS at both the transcriptional and translational level. The HAS2 isoform is the isoform most susceptible to external regulation. The role of the UDP-glucose dehydrogenase in mammalian glycosaminoglycan biosynthesis was assessed. The enzyme is essential for hyaluronan, heparan sulfate and chondroitin sulfate biosynthesis, but does not exert a rate-limiting effect.
76

EXTRACTION OF SULFATED GLYCOSAMINOGLYCANS FROM MACKEREL AND HERRING FISH WASTE

Raghuraman, Harikrishnan 24 July 2013 (has links)
Marine capture fisheries contribute over 50% of total world fish production and more than 70% of this production is utilized for processing. The Canadian commercial fishing industry is one of the world’s most valued industries but generates large quantities of solid waste and wastewater. The increasing growth of the fish processing industry, the need for reduction of pollutants and the need to increase returns on raw material has led fish processors to adopt new ways of utilizing the wastes. In particular, efforts have focused on converting the biological substance in solid fish processing waste to various valuable compounds including both nutritional and non-nutritional products. Sulfated glycosaminoglycans (sGAGs) are heteropolysaccharide molecules with potential therapeutic applications and anticoagulant properties. Anticoagulants are responsible for curing major death-causing diseases such as strokes and cardiovascular diseases. The aim of this study was to develop an economically feasible technique to extract sulfated glycosaminoglycans (sGAGs) from fish processing waste. Two different fish (mackerel and herring) were used to optimize the extraction of sGAG. The effects of hydrolysis time (3, 6, 12 and 24 hrs) and papain concentration (15 and 20u/ml) on the extraction of sGAGs from different fish parts (whole fish, flesh, head, gut, fins and tails, skin and bones) were evaluated. The highest concentration of sGAGs (206.7 mg/g) was obtained from the mackerel head sample at 6 hrs of hydrolysis time and 20 u/ml of enzyme concentration while the highest concentration of sGAGs (236.3 mg/g) was obtained from herring gut at 12 hrs of hydrolysis time and 20 u/ml of enzyme concentration. The concentration of sGAG obtained from other part of mackerel were flesh (23.96 mg/g), waste (163.23 mg/g), fins and tail (86.63 mg/g), gut (203.52 mg/g), skin (105.45 mg/g) and bones (97.2 mg/g). However, the concentration of sGAG obtained from other parts of herring were flesh (39.34 mg/g), waste (130.15 mg/g), head (162.76 mg/g), fins and tail (148.53 mg/g), skin (65.89 mg/g) and bones (75.57 mg/g). Comparing the overall concentration of sGAG in waste samples of the fish, the mackerel produced higher sGAG than the herring.
77

Investigation of the interleukin-10-GAG interaction using molecular simulation methods

Gehrcke, Jan-Philip 31 March 2015 (has links) (PDF)
Glycosaminoglycans (GAGs) are linear polysaccharides, built of periodically occurring disaccharide units. GAGs are ubiquitous in the extracellular matrix (ECM), where they exhibit multifarious biological activities. This diversity arises from - among others - their ability to interact with and regulate a large number of proteins, such as cytokines, chemokines, and growth factors. As of the huge variety in their chemical configuration, GAGs are further sub-classified into different types (heparin, for instance, is one of these sub-classes). Hence, GAGs are a diverse class of molecules, which surely contributes to the broadness of their spectrum of biological functions. Through varying arrangements of sulfate groups and different types of saccharide units, individual GAG molecules can establish specific atomic contacts to proteins. One of the best-studied examples is antithrombin-heparin, whose biologically relevant interaction requires a specific pentasaccharide sequence. It is valid to assume, however, that various proteins are yet to be discovered whose biological functions are in some way affected by GAGs. In other cases, and this is true for the cytokine interleukin-10 (IL-10), there are already experimental indications for a biologically relevant protein-GAG interaction, but the details are still obscure and the fundamental molecular interaction mechanism has still not been clarified. IL-10 has been shown to bind GAGs. So far, however, no structural detail about IL-10-GAG interaction is known. Function-wise, IL-10 is mainly considered to be immunosuppressive and therefore anti-inflammatory, but it in fact has the pleiotropic ability to influence the immune system in both directions, i.e. it constitutes a complex regulation system on its own. Therefore, the role of GAGs in this system is potentially substantial, but is yet to be clarified. In vitro experiments have yielded indications for GAGs being able to modulate IL-10\'s biological function, and obviously IL-10 and GAGs are simultaneously present in the ECM. This gives rise to the assumption that IL-10-GAG interaction is of biological significance, and that understanding the impact of GAGs on IL-10 biology is important - from the basic research point of view, but also for the development of therapies, potentially involving artificially designed ECMs. A promising approach for obtaining knowledge about the nature of IL-10-GAG interaction is its investigation on the structural level, i.e. the identification and characterization of the molecular interaction mechanisms that govern the IL-10-GAG system. In this PhD project it was my goal to reveal structural and molecular details about IL-10-GAG interaction with theoretical and computational means, and with the help of experiments performed by collaborators in the framework of the Collaborative Research Centre DFG Transregio 67. For achieving this, I developed three methods for the in silico investigation of protein-GAG systems in general and subsequently applied them to the IL-10-GAG system. Parts of that work have been published in scientific journals, as outlined further below. I proposed and validated a systematic approach for predicting GAG binding regions on a given protein, based on the numerical simulation and analysis of its Coulomb potential. One advantage of this method is its intrinsic ability to provide clues about the reliability of the resulting prediction. Application of this approach to IL-10 lead to the observation that its Coulomb attraction for GAGs is significantly weaker than in case of exemplary protein-GAG systems (such as FGF2-heparin). Still, a distinct IL-10-GAG binding region centered on the residues R102, R104, R106, R107 of the human IL-10 sequence was identified. This region can be assumed to play a major role in IL-10-GAG interaction, as described in chapter 3. Molecular docking methods are used to generate binding mode predictions for a given receptor-ligand system. In chapter 4, I clarify the importance of data clustering as an essential step for post-processing docking results and present a clustering methodology optimized for GAG molecules. It allows for a reproducible analysis, enabling systematic comparisons among different docking studies. The approach has become standard procedure in our research group. It has been applied in a variety of studies, and served as an essential tool for studying IL-10-GAG interaction, as described in chapter 3. Motivated by the shortcomings of classical docking approaches, especially with respect to protein-GAG systems, I worked on the development of a molecular dynamics-based docking method with less radical approximations than usually applied in classical docking. The goal was to make the computational model properly account for the special physical properties of GAGs, and to include the effects of receptor flexibility and solvation. The methodology was named Dynamic Molecular Docking (DMD) and published in the Journal of Chemical Information and Modeling-together with a validation study. The subsequent application of DMD in a variety of studies required enormous amounts of computational resources. For tackling this challenge, I established a graphics processing unit-based high-performance computing environment in our research group and developed a software framework for reliably performing DMD studies on this hardware, as well as on other computing resources of the TU Dresden. The investigation of the IL-10-GAG system via DMD was focused on the IL-10-GAG binding region predicted earlier, and made heavy usage of the optimized clustering approach named above. An important result of this endeavor is that IL-10's amino acid residue R107 significantly stands out compared to all other residues and supposedly plays a particularly important role in IL-10-GAG recognition. The collaboration with the NMR laboratory of Prof. Daniel Huster at the Universität Leipzig was fruitful: I post-processed nuclear Overhauser effect data and obtained heparin structure models, which revealed that IL-10-heparin interaction has a measurable impact on the backbone structure of the heparin molecule. These results were published in Glycobiology. In chapter 8, I propose two different scenarios about how GAG-binding to IL-10 might affect its biological function, based on the findings made in this thesis project. In conclusion, a set of methods has been developed, all of which are generically applicable for the investigation of protein-GAG systems. Regarding the IL-10-GAG system, valuable structural insights for increasing the understanding about its molecular mechanisms were derived. These observations pave the way towards unraveling GAG-mediated bioactivity of IL-10, which may then be specifically exploited, for instance in artificial ECMs for improved wound healing.
78

Heparan sulfate dependent sequestration during Plasmodium falciparum malaria /

Vogt, Anna, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
79

The lysosomal degradation of heparan sulphate : a comparative study of the physical and catalytic properties of the heparan sulphate degradative enzymes /

Freeman, Craig. January 1991 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Paediatrics, 1991. / Copies of author's previously published articles inserted. Includes bibliographical references.
80

Human lysosomal sulphate transport /

Lewis, Martin David. January 2001 (has links) (PDF)
Thesis (Ph.D.)-- University of Adelaide, Dept. of Paediatrics, 2001. / Addendum inserted at back. Includes bibliographical references (leaves 266-287).

Page generated in 0.0816 seconds