• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 58
  • 51
  • 29
  • 20
  • 10
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 464
  • 451
  • 87
  • 82
  • 67
  • 48
  • 39
  • 33
  • 30
  • 29
  • 27
  • 27
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Autophagy-Pathogen Interaction: Implications for Toxoplasma gondii and HIV-1 Pathogenesis

Van Grol, Jennifer 07 July 2011 (has links)
No description available.
172

Toxoplasma gondii Manipulates Host Cell Signaling To Prevent Autophagic Targeting And Promote Survival Within Host Cells

Muniz-Feliciano, Luis January 2014 (has links)
No description available.
173

Age and Sex Related Behavioral Changes in Mice Congenitally Infected with Toxoplasma gondii: Role of dopamine and other neurotransmitters in the genesis of behavioral changes due to congenital infection and attempted amelioration with interferon gamma

Goodwin, David G. 12 September 2011 (has links)
Evidence suggests that the neurotropic parasite Toxoplasma gondii may play a role in the development of cognitive impairments. My hypothesis was that congenital exposure to T. gondii would lead to detectable age and sex related differences in behavior and neurotransmitter levels in mice. The neurotransmitter dopamine and commonly used anti-schizophrenic agents were evaluated against T. gondii in human fibroblast cells. Dopamine caused a significant increase in tachyzoite numbers at 250 nM but not 100 nM and the drugs valproic acid, fluphenazine, thioridazine and trifluoperazine inhibited T. gondii development. The effects T. gondii infection had on behavior were examined using a congenital mouse model. Previous work demonstrated maternal immune stimulation (MIS) with interferon gamma (INF-g) resulted in decreased fetal mortality from congenital T. gondii infections; therefore I examined the effects of INF- g treatment of mothers to determine if protection from the behavioral effects of T. gondii occurred in their offspring. No differences in concentrations of neurotransmitters in the brains of congenitally infected mice were observed. I found that mice infected with T. gondii developed adult onset behavior impairments with decreased rate of learning, increased activity and decreased memory, indicating cognitive impairment for male mice and not female mice. My findings support the evidence T. gondii is a factor in the development of cognitive impairments. My results for T. gondii exposed male mice are consistent with the convention that males have more cognitive impairments in the prodromal stage of schizophrenia. MIS with IFN-g had a minimal effect on behavior post sexual maturity but had a greater effect on pre sexual maturity female mice which exhibited difficulties with spatial memory, coordination and the ability to process stimuli. The results indicate the behavior alterations from IFN- g are transient. When MIS is given prior to congenital infection with T. gondii, we detected no behavior deficits in any group of mice, including male mice post sexual maturity. Based on the results of my study, I must reject the hypothesis that neurotransmitter levels are influenced by congenital toxoplasmosis and accept the hypothesis that congenital T. gondii infection caused cognitive impairments in male mice post sexual maturity. / Ph. D.
174

Mechanisms underlying neural circuit remodeling in Toxoplasma gondii infection

Carrillo, Gabriela Lizana 20 September 2022 (has links)
The central nervous system (CNS) is protected by a vascular blood-brain barrier that prevents many types of pathogens from entering the brain. Still, some pathogens have evolved mechanisms to traverse this barrier and establish a long-term infection. The apicomplexan parasite, Toxoplasma gondii, is one such pathogen with the ability to infect the CNS in virtually all warm-blooded animals, including humans. Across the globe, an estimated 30% of the human population is infected with Toxoplasma, an infection for which mounting evidence suggests increases the risk for developing neurological and neuropsychiatric disorders, like seizures and schizophrenia. In my dissertation, I investigate the telencephalic neural circuit changes induced by long-term Toxoplasma infection in the mouse brain and the neuroimmune signaling role of the complement system in mediating microglial remodeling of neural circuits following parasitic infection. While there has been keen interest in investigating neural circuit changes in the amygdala – a region of the brain involved in fear response and which Toxoplasma infection alters in many species of infected hosts – the hippocampus and cortex have been less explored. These are brain regions for which Toxoplasma also has tropism, and moreover, are rich with fast-spiking parvalbumin perisomatic synapses, a type of GABAergic synapse whose dysfunction has been implicated in epilepsy and schizophrenia. By employing a range of visualization techniques to assess cell-to-cell connectivity and neuron-glia interactions (including immunohistochemistry, ultrastructural microscopy, and microglia-specific reporter mouse lines), I discovered that longterm Toxoplasma infection causes microglia to target and ensheath neuronal somata in these regions and subsequently phagocytose their perisomatic inhibitory synapses. These findings provide a novel model by which Toxoplasma infection within the brain can lead to seizure susceptibility and a wider range of behavioral and cognitive changes unrelated to fear response. In the Toxoplasma infected brain, microglia, along with monocytes recruited to the brain from the periphery, coordinate a neuroinflammatory response against pathogenic invasion. This is characterized by a widespread activation of these cells and their increased interaction with neurons and their synaptic inputs. Yet, whether T. gondii infection triggers microglia and monocytes (i.e. phagocytes) to target, ensheath, and remove perisomatic inhibitory synapses on neuronal somata indiscriminately, or whether specificity exists in this type of circuit remodeling, remained unclear. Through a comprehensive assessment of phagocyte interactions with cortical neuron subtypes, I demonstrate that phagocytes selectively target and ensheath excitatory pyramidal cells in long-term infection. Moreover, coupling of in situ hybridization with transgenic reporter lines and immunolabeling revealed that in addition to phagocytes, excitatory neurons also express complement component C3 following infection (while inhibitory interneurons do not). Lastly, by employing targeted deletion of complement components, C1q and C3, I show that complement is required for phagocyte ensheathment of excitatory cells and the subsequent removal of perisomatic inhibitory synapses on these cells (albeit not through the classical pathway). Together, these studies highlight a novel role for complement in mediating synapse-type and cell-type specific circuit remodeling in the Toxoplasma infected brain. / Doctor of Philosophy / Parasites are microorganisms that rely on other living organisms (called hosts) for their survival. Although some parasites only live on their hosts, others have developed ways to establish infections and obtain the nutrients that keep them alive from host cells. My Ph.D. research has focused on studying one of these parasites, Toxoplasma gondii (commonly referred to as Toxo), that has evolved the unique ability to establish brain infections in almost all animals around the world, from rodents to humans. Recent discoveries show that brain infection with this parasite can cause seizures, an imbalance in the way that specialized cells of the brain (called neurons) communicate with each other, causing harmful hyperactivity within the brain. Toxo infection can also cause behavioral and cognitive changes in infected animals, making them more susceptible to predation. In humans, infection with Toxo increases their risk for developing different types of mental illness, such as schizophrenia. The focus of my Ph.D. research has been in trying to understand, at the cellular and molecular level, how infection with this parasite can lead to seizures and behavioral changes, by using mice as a model. Mice have a similar brain structure to humans, and over the years, scientists have developed many tools that allow us to visualize and study the connections between neurons (called synapses). I'm interested in understanding how changes in these connections affect how neurons communicate with each other, and ultimately, how we behave and think. I have been studying a type of connection that, if lost or damaged, can lead to seizures and some types of mental illness. These connections are called 'perisomatic inhibitory synapses', and they form on many distinct types of neurons, but specifically on the cell bodies of these neurons. They act as a traffic light, informing neurons when and for how long to 'slow down' their activity. I discovered that after the parasite enters the brain, it causes another type of cell in the brain, called microglia, to extensively interact with neurons in the cortex and hippocampus (areas of your brain important for thinking, executing behavior, and learning). Microglia are immune cells of the brain that inspect the brain for anything damaged or that doesn't belong (like parasites) and removes them from the brain. By performing experiments where I delete individual immune molecules from mice, I found that one immune molecule, called 'complement component C3' acts as cue for microglia to find these cells, wrap around them, and permanently remove these important connections. Surprisingly, however, microglia don't remove these connections from all neurons, indiscriminately, they do so only on one specific cell type called 'excitatory pyramidal neurons,' and as the name implies, they're the ones who drive activity in the brain. My half-a-decade's worth of research helps us understand parasitic infections in the brain in a couple of ways: First, I have discovered one of the mechanisms by which neuronal connections are lost in the Toxo-infected brain (which is a mechanism that leads to loss of neuronal connections in the injured and aging brain as well). This is significant because it might provide insight into why some people who are infected with Toxo develop seizures or mental illness, while others don't. More importantly, Toxo-infection causes changes in the brain that are very specific, in terms of both the type of neuronal connection that is affected and the type of cell that is affected. Why these changes are so specific remain to be uncovered, but it suggests that Toxo can either a) trigger a unique immune response in the brain that leads to very precise changes in neuron-toneuron connections and signaling or b) the parasite, while hiding inside of neurons, may hijack the machinery of certain cell types in a way that helps them survive longer.
175

Prevalence and Identity of Tissue Cyst Forming Apicomplexan Parasites in the Muscles of Raptors

Rushin, Tiffany Patricia 11 June 2014 (has links)
There is little information on the distribution and diversity of Apicomplexan protozoal infections in the tissues of raptors in the United States. Protozoan encephalitis caused by Sarcocystis species and Toxoplasma gondii is being increasingly reported in raptors from various locations in the United States. To better determine the exposure of raptors to these Apicomplexan parasites, we examined breast and heart muscle tissue of raptors from the Carolina Raptor Center for the presence of Sarcocystis species, T. gondii and Neospora caninum via histology, Polymerase Chain Reaction (PCR) and Restriction Fragment Length Polymorphism (RFLP) using DraI and HinfI enzymes (Sarocystis only). Of 187 available HandE stained tissue sections, 33 contained sarcocysts. Nineteen of these slides had a matching DNA sample to compare via PCR. Nine of these 19 were positive for Sarcocystis via ITS PCR. Using ITS PCR, we detected Sarcocystis DNA in 24 of 114 birds (21.1%). Further molecular differentiation using JNB primers showed that 9 of the 24 birds were positive for either S. neurona or S. falcatula. RFLP analysis of these 9 indicated that 4 were S. falcatula samples, and 3 were S. falcatula Arg samples that cut with both enzymes. Our Sarcocystis positive samples were also tested for S. calchasi, S. columbae and Sarcocystis sp. Ex. A. nisus using PCR primers designed for these species. These species are emerging in Europe and have already shown an expansion of their distribution. Two samples (14567 and 15203) suggestive of Sarcocystis sp. Ex. A. nisus were identified, as well as one sample (14567), which suggested the presence of S. columbae. None of these samples were confirmed by sequencing the amplicons and the other 22 samples were all negative for these parasites. Recent reports have demonstrated DNA of S. falcatula in the brain and muscles of great horned owls (Bubo virginianus), golden eagles (Aquila chrysaetos), and bald eagles (Haliaeetus leucocephalus) with encephalitis in rehabilitation centers in Indiana, Minnesota, and Virginia using PCR. DNA of S. calchasi has been found in CNS tissue of several species of birds suffering encephalitis in an aviary in California. Hawks (Accipiter species) are believed to be the source of infection. The prevalence of T. gondii was 18.4% (21 of 114) in these birds by PCR, but none were positive by histopathology. N. caninum prevalence in raptors has been poorly discussed in the literature. This parasite uses canids as the definitive host in its life cycle, and is considered to have a much more restricted host range than T. gondii. Thirty-five of 114 birds (30.7%) were found to be PCR positive for N. caninum, but no tissue cysts of N. caninum were observed in histological sections. Co-infection of 2 or all 3 species was detected in 16 of 114 birds (14%). This study demonstrates that there may be a higher prevalence of S. falcatula in raptors than was previously known, including more, as yet unknown, species of Sarcocystis capable of infecting raptors as intermediate hosts. Our PCR prevalence for T. gondii is similar to the serological prevalence for this parasite in raptors. The high PCR prevalence of N. caninum needs to be confirmed by sequencing the amplicons and the use of additional PCR primers. Information from the present study may help to inform zoos, aviaries and wildlife rehabilitation centers about parasite host diversity and reinforce the importance of preventative measures, such as making sure opossums (S. falcatula and S. falcatula-like), feral cats (T. gondii), and wild raptors (S. calchasi) do not have access to facilities. Insect control should also be emphasized because of their ability to serve as phoretic hosts and carry oocysts/sporocysts into zoos, aviaries, and rehabilitation centers. / Master of Science
176

Prevalence Of Igg Antibodies To Encephalitozoon Cuniculi, Toxoplasma Gondii, And Sarcocystis Neurona In Domestic Cats

Hsu, Hsing-Ho Vasha 30 August 2010 (has links)
Encephalitozoon cuniculi, Toxoplasma gondii and Sarcocystis neurona are intracellular parasites that infect a wide range of mammalian host species including domestic cats. The prevalence of antibodies to these parasites in cats was examined using an indirect immunofluorescence antibody assay. E. cuniculi targets the kidneys of rabbits but the prevalence of disease in cats is unknown. Chronic kidney disease (CKD) is a common cause of illness in cats. T. gondii is a widespread parasite of cats; however, it is not considered a major causative agent of CKD. The first hypothesis was that E. cuniculi and T. gondii are unrecognized causes of chronic kidney disease in domestic cats. Serum and plasma samples were examined for protozoal antibodies from 232 feline patients at the VMRCVM Teaching Hospital. Thirty-six of the 232 samples met the IRIS criteria for CKD. Antibodies to E. cuniculi were found in 15 samples, 4 of which came from cats with CKD. Antibodies to T. gondii were found in 63 samples; 10 cats of the 63 had CKD. These were not significantly different from cats with no CKD and the null hypothesis was rejected. Domestic cats, armadillos, raccoons and skunks are intermediate hosts (IH) for S. neurona while opossums are the definitive host (DH). The seroprevalence of S. neurona was examined in domestic cats from Virginia and Pennsylvania. The second hypothesis was that domestic cats are important IH for S. neurona transmission. A low seroprevalence was found in 32 of the 441 cats and the null hypothesis was rejected. / Master of Science in Life Sciences
177

Characterizing Cystoisospora canis as a Model of Apicomplexan Tissue Cyst Formation and Reactivation

Houk-Miles, Alice Elizabeth 01 July 2015 (has links)
Cystoisospora canis is an Apicomplexan parasite of the small intestine of dogs. C. canis produces monozoic tissue cysts (MZT) that are similar to the polyzoic tissue cysts (PZT) of Toxoplasma gondii, a parasite of medical and veterinary importance, which can reactivate and cause toxoplasmic encephalitis. We hypothesized that C. canis is similar biologically and genetically enough to T. gondii to be a novel model for studying tissue cyst biology. We examined the pathogenesis of C. canis in beagles and quantified the oocysts shed. We found this isolate had similar infection patterns to other C. canis isolates studied. We were able to superinfect beagles that came with natural infections of Cystoisospora ohioensis-like oocysts indicating that little protection against C. canis infection occurred in these beagles. The C. canis oocysts collected were purified and used for future studies. We demonstrated in vitro that C. canis could infect 8 mammalian cell lines and produce MZT. The MZT were able to persist in cell culture for at least 60 days. We were able to induce reactivation of MZT treated with bile-trypsin solution. In molecular studies, we characterized C. canis genetically using ITS1 and CO1 to build phylogenetic trees and found C. canis was most similar to C. ohioensis-like with ITS1 and more similar to T. gondii than any other coccidia using ITS1 and CO1. We identified genes and proteins involved with virulence, cyst wall structure, and immune evasion of T. gondii and examined the DNA of C. canis for orthologs. C. canis had orthologs with 8 of 20 T. gondii genes examined. Monoclonal and polyclonal antibody and lectin studies demonstrated similar tissue cyst wall proteins on C. canis MZT and T. gondii PZT. Our findings in vitro and using genetic characterization of C. canis indicated the presence of similar genes and proteins, and its close phylogenetic location with T. gondii demonstrate that C. canis may serve as a model to examine tissue cyst biology. The system we described provides a simple model to produce tissue cysts and to study host factors that cause reactivation of tissue cysts. / Ph. D.
178

L'épidémiologie de Toxoplasma gondii et Helicobacter pylori chez les Inuit du Nunavik

Ducrocq, Julie 13 December 2023 (has links)
Il y a environ 13 000 Inuit qui vivent dans les quatorze communautés côtières du Nunavik, consommant des aliments locaux issus de la chasse, la pêche, la trappe et la cueillette. Malgré les bienfaits documentés liés à la consommation d'aliments locaux et à leur mode de vie traditionnel, sur leur santé et leur bien-être, certaines particularités culturelles (e.g. consommation de viande crue et d'eau naturelle, surpeuplement des logements) peuvent faire augmenter les risques d'exposition à certaines maladies infectieuses. L'enquête de santé Qanuirlipitaa? 2017 (Q2017) a été mise sur pied afin d'établir un portrait de la santé des habitants du Nunavik. Le volet portant sur les maladies zoonotiques et gastro-entériques visait, entre autres, à améliorer les connaissances en lien avec l'épidémiologie du parasite Toxoplasma gondii et de la bactérie Helicobacter pylori. Au total, 1326 Nunavimmiuts ont participés à Q2017 dont 303 avaient également participé à l'enquête de santé Qanuippitaa? 2004. Les autorités en santé publique s'intéressent à Toxoplasma gondii car il est un parasite excrété par les félins et qui cause des problèmes principalement chez les femmes enceintes qui n'y ont jamais été exposées et les individus immunosupprimés. Au Nunavik, une séroprévalence élevée d'anticorps contre T. gondii a été observée durant l'enquête de 2004 (~60%) et l'on soupçonne que la consommation d'aliments locaux et/ou d'eau naturelle contaminés par le parasite soient les principales sources d'exposition. En vue d'élaborer les questions de Q2017, une méta-analyse portant sur l'association entre la présence d'anticorps contre T. gondii et la consommation de viande crue ou peu cuite, toutes espèces animales confondues, a été effectuée. En utilisant un modèle à effet aléatoire, des mesures d'association ont été estimées selon différents devis d'étude (cohorte, cas-témoins et transversales) tout en tenant compte de l'hétérogénéité et de la qualité des études. Nos résultats appuient que les personnes mangeant de la viande crue ou peu cuite présentent un risque (rapport de prévalence ou d'incidence variant de 1,2 à 1,3) et une chance (rapports de cote variant de 1,7 à 3,0) plus élevés d'avoir des anticorps contre T. gondii, par rapport à celles qui cuisent la viande. Lors de Q2017, 43% des Nunavimmiuts possédaient des anticorps contre T. gondii. Grâce à trois différents modèles de régression de type Poisson robuste employant différentes variables, nous avons observé que la séroprévalence était corrélée avec la consommation de mollusque (rapports de prévalence [RP] variant de 1,02 à 1,21) dans un modèle et chaque augmentation de deux consommations de béluga (RP variant de 1,01 à 1,03), de foie de phoque (RP variant de 1,01 à 1,02) et d'oies (RP variant de 1,01 à 1,02), dans les deux autres modèles. La consommation d'eau provenant d'une source naturelle (RP de 1,47) ou municipale (RP de 1,42) étaient aussi positivement corrélée à une séroprévalence plus élevée comparativement à la consommation d'eau embouteillée dans un modèle, quoique les résultats étaient aussi compatibles avec la valeur nulle. Les autorités en santé publique du Nunavik s'intéressent aussi à Helicobacter pylori, une bactérie qui prolifère dans l'estomac humain, provoquant une inflammation chronique (gastrite) menant jusqu'à des ulcères gastro-duodénaux et le cancer. La bactérie a été détecté chez 71% des participants qui ont fourni des selles tandis que les anticorps ont été détectés chez 73% et 77% de ceux qui ont fourni du sérum, en 2017 et en 2004, respectivement. La colonisation par H. pylori au Nunavik est considérée élevée par rapport au reste de la province, mais est similaire aux autres communautés autochtones nord-américaines. Un diagnostic antérieur d'infection à H. pylori, de gastrite ou d'ulcères gastro-duodénaux a été observé, respectivement, dans 28,4%, 11,2% et 2,4% des dossiers médicaux. La présence d'H. pylori était associée positivement au fait d'habiter la Côte d'Hudson (PR de 1,11), à l'âge (relation curvilinéaire), au nombre de personnes dans le ménage (PR de 1,03) et négativement à la consommation d'eau embouteillée (PR variant de 0,72 à 0,86) tandis que la consommation d'alcool était légèrement associée à une réduction de la prévalence (PR de 0,96). La sensibilité et la spécificité de la sérologie, comparativement à la détection des antigènes dans les selles, sont de 0,85 et 0,67.
179

Interactions protozoaires – moule zébrée (Dreissena polymorpha) : implication en biosurveillance sanitaire et environnementale / Interaction protozoa - zebra mussel (Dreissena polymorpha) : interest for sanitary and environmental biomonitoring

Palos Ladeiro, Mélissa 10 October 2014 (has links)
L'évaluation de la contamination des cours d'eau par les agents parasites protozoaires est fondamentale puisqu'on estime qu'une personne sur deux dans le monde est ou a été infectée par une zoonose d'origine parasitaire. Les trois principaux parasites responsables d'épidémies hydriques sont Cryptosporidium parvum, Giardia duodenalis et Toxoplasma gondii. Actuellement, seule la matrice eau est utilisée pour analyser la présence de ces parasites dans l'environnement aquatique. Peu reproductible et chronophage, cette méthode ne permet pas de mettre en place une surveillance de routine. Le projet de thèse propose l'utilisation de la moule zébrée, Dreissena polymorpha, comme un nouvel outil complémentaire pour évaluer la qualité biologique des milieux d'eau douce. Au travers d'expérimentations combinant différentes approches in vivo, ex vivo et in situ, le potentiel de la dreissène à accumuler les parasites protozoaires ainsi que leurs cinétiques d'accumulation dans les tissus ont été déterminés. Utilisée comme espèce sentinelle des contaminations chimiques, l'effet d'un stress biologique dû aux protozoaires a été évalué au laboratoire sur les cellules clefs de l'immunité des bivalves, les hémocytes. Ainsi, le projet permet de placer l'organisme Dreissena polymorpha dans une double stratégie de biosurveillance : une biosurveillance sanitaire liée à l'utilisation de la dreissène en tant que vecteur de parasites considérés comme enjeux de santé publique et une biosurveillance environnementale liée à la compréhension des facteurs de confusion avec les réponses biologiques utilisées comme biomarqueurs. / Assessment of the water biological contamination by protozoa is crucial since one in two person of the world population is or has been infected by a parasitic zoonosis. The main protozoa responsible of waterborne outbreaks are Cryptosporidium parvum, Giardia duodenalis and Toxoplasma gondii. Currently, protozoa detection is only based on water analysis. Irrelevant and time consuming, water analysis do not permit accurate biomonitoring. These project aims to use the freshwater mussel, Dreissena polymorpha, as a new complementary tool for biological quality analysis of freshwater. Through in vivo, ex vivo and in situ experiments, we determine the utility of zebra mussel for protozoa accumulation and their accumulation pattern within mussel tissues. Already use as a sentinel specie for chemical contamination, biological stress caused by protozoa has been determined in laboratory experiments on key cells of bivalve immunity, the hemocytes. Hence, Dreissena polymorpha could be involved in a twofold biomonitoring tactics: sanitary biomonitoring related to the use of zebra mussel as vector to protozoa with public health issue and environmental biomonitoring on understanding of the confounding factors in biological responses used as biomarkers.
180

Identification d'une protéine parasitaire interagissant avec le facteur de transcription UHRF1 dans les cellules infectées par Toxoplasma gondii / Toxoplasma gondii ROP16 kinase silences the cyclin B1 gene promoter by hijacking host cell UHRF1-dependent epigenetic pathways

Sabou, Alina Marcela 18 September 2018 (has links)
La toxoplasmose, déterminée par le parasite Toxoplasma gondii, est l'une des infections les plus répandues au monde, en raison de la persistance à vie sous forme latente de ce parasite au sein de ces hôtes. Ce parasite fait partie des Apicomplexa et détourne les voies de signalisation de l'hôte par des mécanismes épigénétiques qui convergent vers des protéines nucléaires clés. Nous rapportons ici une nouvelle stratégie de persistance parasitaire impliquant la protéine de rhoptries ROP16 de T. gondii, sécrétée précocement lors de l'invasion, qui cible le facteur de transcription UHRF1 (Ubiquitin-like containing PHD and RING fingers domain 1) et induit un arrêt du cycle de la cellule-hôte. Ceci est induit par l'activité de la DNMT et le remodelage de la chromatine au niveau du promoteur du gène de la cycline B1 par le recrutement d’UHRF1 phosphorylé associé à un complexe protéique multienzymatique répressif. Cela conduit à la désacétylation et à la méthylation de l'histone H3 entourant le promoteur de la cycline B1 pour réduire de manière épigénétique son activité transcriptionnelle. De plus, l'infection par T. gondii provoque une hyper-méthylation de l'ADN dans la cellule hôte par la régulation positive des DNMTs. ROP16 est déjà connue pour activer et phosphoryler des facteurs de transcription de l'immunité protectrice tels que STAT 3/6/5 et le suppresseur tumoral p53 impliqué dans la progression du cycle cellulaire. De plus, ROP16 module ces voies de signalisation de l'hôte de manière souche-dépendante. Comme dans le cas de STAT3, les effets de ROP16 sur UHRF1 dépendent du polymorphisme d'un seul acide aminé du domaine kinase de ROP16. Ce travail montre que Toxoplasma module un nouvel initiateur épigénétique, UHRF1, via un événement précoce initié par la kinase parasitaire ROP16. / Toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii, is one of the most common infections in the world due to the lifelong persistence of this parasite in a latent stage in its hosts. T. gondii hijacks host signaling pathways through epigenetic mechanisms which converge on key nuclear proteins. Here we report a new parasite persistence strategy involving Toxoplasma rhoptry protein ROP16 secreted early during invasion, which targets the transcription factor UHRF1 (Ubiquitin-like containing PHD and RING fingers domain 1), and leads to host cell cycle arrest. This is mediated by DNMT activity and chromatin remodeling at the cyclin B1 gene promoter through recruitment of phosphorylated UHRF1 associated with a repressive multienzymatic protein complex. This leads to deacetylation and methylation of histone H3 surrounding the cyclin B1 gene promoter to epigenetically silence its transcriptional activity. Moreover, T. gondii infection causes DNA hypermethylation in its host cell, by upregulation of DNMTs. ROP16 is already known to activate and phosphorylate protective immunity transcription factors such as STAT 3/6/5 and the tumor suppressor p53 involved in cell cycle progression. Moreover, ROP16 modulates host signaling pathways in a strain-dependent manner. Like in the case of STAT3, the strain-dependent effects of ROP16 on UHRF1 can be attributed to a single amino-acid polymorphism in ROP16. This study demonstrates that Toxoplasma hijacks a new epigenetic initiator, UHRF1, through an early event initiated by the ROP16 parasite kinase.

Page generated in 0.0415 seconds