Spelling suggestions: "subject:"abordan"" "subject:"hvordan""
11 |
On the Clebsch-Gordan problem for quiver representationsHerschend, Martin January 2008 (has links)
On the category of representations of a given quiver we define a tensor product point-wise and arrow-wise. The corresponding Clebsch-Gordan problem of how the tensor product of indecomposable representations decomposes into a direct sum of indecomposable representations is the topic of this thesis. The choice of tensor product is motivated by an investigation of possible ways to modify the classical tensor product from group representation theory to the case of quiver representations. It turns out that all of them yield tensor products which essentially are the same as the point-wise tensor product. We solve the Clebsch-Gordan problem for all Dynkin quivers of type A, D and E6, and provide explicit descriptions of their respective representation rings. Furthermore, we investigate how the tensor product interacts with Galois coverings. The results obtained are used to solve the Clebsch-Gordan problem for all extended Dynkin quivers of type Ãn and the double loop quiver with relations βα=αβ=αn=βn=0.
|
12 |
On the Clebsch-Gordan problem for quiver representationsHerschend, Martin January 2008 (has links)
<p>On the category of representations of a given quiver we define a tensor product point-wise and arrow-wise. The corresponding Clebsch-Gordan problem of how the tensor product of indecomposable representations decomposes into a direct sum of indecomposable representations is the topic of this thesis.</p><p>The choice of tensor product is motivated by an investigation of possible ways to modify the classical tensor product from group representation theory to the case of quiver representations. It turns out that all of them yield tensor products which essentially are the same as the point-wise tensor product.</p><p>We solve the Clebsch-Gordan problem for all Dynkin quivers of type A, D and E<sub>6</sub>, and provide explicit descriptions of their respective representation rings. Furthermore, we investigate how the tensor product interacts with Galois coverings. The results obtained are used to solve the Clebsch-Gordan problem for all extended Dynkin quivers of type Ã<sub>n</sub> and the double loop quiver with relations βα=αβ=α<sup>n</sup>=β<sup>n</sup>=0.</p>
|
13 |
Toward a Critical Edition of Gordon Jacob's William Byrd Suite: A Comparison of Extant Editions with The Fitzwilliam Virginal BookTrachsel, Andrew Jason 08 1900 (has links)
Despite being recognized as one of the most important compositions in the twentieth¬ century wind band repertoire, the William Byrd Suite presents many obstacles for the conductor and ensemble members. Since its initial publication in 1924, the piece has contained many discrepancies of pitch, articulation, rhythm, dynamics, and phrase completion that appear in the score as well as the parts. Although the work was reissued by Boosey & Hawkes in 1960 and 1991, many of the original errors remained intact. The sheer amount of inconsistencies causes great difficulties for the musicians involved in the rehearsal process, slowing efficiency and resulting in a frustrating impediment to a quality performance. The primary purpose of this study was the creation of a critical edition of Jacob's William Byrd Suite that eliminates errors of extant editions, incorporates modern instrumentation, and considers the source material. To accomplish this, the present project looks at all sources, including the autograph manuscript, orchestral version, published editions, and errata. The editorial process examines the governing philosophy, subsequent editorial decisions and indications, and the final organization of the parts. The study concludes with the inclusion of the full score of the new critical edition.
|
14 |
La structure des représentations des algèbres de Temperley-Lieb affines sur la chaîne de spins XXZPinet, Théo 08 1900 (has links)
Ce mémoire révèle la structure des représentations des algèbres de Temperley-Lieb affines aTLN(β) sur les espaces propres CN(q,v,d) (du spin total Sz) des chaînes de spins XXZ périodiques. En particulier, on y démontre que ces représentations, introduites dans Martin/Saleur et Morin-Duchesne/Saint-Aubin, admettent toujours une structure similaire à celle des représentations de Feigin-Fuchs de l’algèbre de Virasoro Vir et que les différentes possibilités, pour la structure d’un Vir-module de Feigin-Fuchs, sont toutes réalisées par un espace propre donné. On introduit aussi une pléthore d’applications aTLN(β)-linéaires entre différents espaces propres en considérant une action naturelle de l’extension de Lusztig LUqsl2 sur les chaînes XXZ périodiques et on caractérise entièrement le noyau ainsi que l’image de ces applications à l’aide de longues suites exactes et d’une décomposition de Clebsch-Gordan généralisée. Finalement, on identifie l’image du morphisme iNd(q,v) défini par Morin-Duchesne/Saint-Aubin et on donne également une nouvelle réalisation explicite pour les couvertures projectives de la catégorie modLUqsl2. / This master’s thesis reveals the structure of the representations of the affine Temperley-Lieb algebras aTLN(β) on the eigenspaces CN(q,v,d) (of the total spin Sz) of the periodic XXZ spin chains. In particular, we show that these representations, introduced by Martin/Saleur and Morin-Duchesne/Saint-Aubin, always admit a structure akin that of the Feigin-Fuchs representations of the Virasoro Vir algebra and that the different possibilities, for the structure of a Feigin-Fuchs Vir-module, are all realized by a given eigenspace. We also give a plethora of aTLN(β)-linear maps between different eigenspaces by considering a natural action of the Lusztig extension LUqsl2 on the periodic XXZ chains and we then fully characterize the kernel and image of these morphisms by means of long exact sequences and a generalized Clebsch-Gordan decomposition. Finally, we explicitly give the image of the intertwiner iNd(q,v) defined by Morin-Duchesne/Saint-Aubin and we also introduce a new explicit realization for the projective covers in the category modLUqsl2.
|
Page generated in 0.0437 seconds