• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 9
  • 3
  • 1
  • Tagged with
  • 26
  • 26
  • 8
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulating large volumes of granular matter

Nicholas, Boen January 1900 (has links)
Master of Science / Department of Computer Science / Daniel Andresen / Modern techniques for simulating granular matter can produce excellent quality simulations, but usually involve a great enough performance cost to render them ineffective for real time applications. This leaves something to be desired for low-cost systems and interactive simulations which are more forgiving to inaccurate simulations, but much more strict in regards to the performance of the simulation itself. What follows is a proposal for a method of simulating granular matter that could potentially support millions of particles and several types for each particle while maintaining acceptable frame rates on consumer level hardware. By leveraging the power of consumer level graphics cards, effective data representation, and a model built around Cellular Automata a simulation can be run in real time.
2

Flow of particulate suspensions through constrictions : multi-particle effects

Mondal, Somnath 20 September 2013 (has links)
Particle-laden flows occur in a variety of natural and industrial situations. As particulate suspensions flow through a medium, particles are often retained at constrictions such as pore throats, outlets or orifices. This occurs not only with oversized particles, but also with particles smaller than the constriction. For instance, jams are caused by the formation of particle bridges/arches when several particles attempt to flow through a constriction simultaneously. In many instances the success of an operation depends on our ability to either ensure or stop the flow of particles in the flow stream. Managing the flow of sand into wellbores during hydrocarbon production from poorly consolidated sandstone reservoirs, also referred to as sand control, is one such application in the oil and gas industry. This dissertation presents a multi-pronged effort at modeling the flow of granular suspensions of different concentrations, and through pore openings of different shapes, with two main objectives: (1) predicting the mass and size-distribution of the particles that are produced before jamming, and (2) investigating the underlying factors that influence the onset and stability of particle arches. Since, the dominant interactions and retention mechanisms are concentration dependent, we divided particulate suspensions into three groups based on the volumetric particle concentration ([phi]). High-concentration suspension flows ([phi]>~50%) are dominated by particle-particle interactions. We modeled polydisperse sand packs flowing through screens with rectangular and woven-square openings using 3D discrete element method (DEM). Simulations were validated against experimental data for a wide range of screen opening and sand size distributions. From the experiments and DEM simulations, a new scaling relation is identified, in which the number of different sized particles produced before retention follows a power-law correlation with the particle-to-outlet size ratio. This correlation is explained with a simple probabilistic model of bridging in polydisperse systems and a particle-size dependent jamming probability calculated from experimental data. A new method is presented to estimate the mass and size distribution of the produced solids through screens. The method uses the entire particle size distribution (PSD) of the formation sand, is validated with experimental data and numerical simulations, and provides more quantitative and accurate predictions of screen performance compared to past methods. It is also found that the stability of particle arches is compromised when adjacent outlets are less than three particle diameters away from each other. Low-concentration suspension flows ([phi]<~1%) are dominated by particle-fluid interactions. They were modeled using analytical and stochastic methods to predict sand production through screens with slot and woven-square openings. Analytical expressions were derived for screens with a constant outlet size or with a known outlet size distribution. Monte Carlo simulations showed excellent agreement with the analytical solutions. Based on experiments, we have demonstrated that the models presented here are predictive, provided that an accurate representation of the formation sand PSD and the screen pore size distribution are available. In the intermediate-concentration regime (~1%<[phi]<~50%), the particle trajectories and the flow field are both influenced by each other. The onset of particle bridging due to hydrodynamic forces was studied for monodisperse systems, in a rectangular channel with a single constriction, using coupled computational fluid dynamics (CFD) and DEM simulations. It is shown that the probability of jamming increases with [phi], and there is a critical particle concentration ([phi, superscript asterisk]) for spontaneous bridging. The outlet-to-particle size ratio is the most critical parameter affecting [phi, superscript asterisk]. The effect of inlet-to-particle size ratio, fluid velocity, particle stiffness, particle-to-fluid density ratio, and the effect of convergence in flow geometry were also studied quantitatively. Finally, the application of micro-tomography images in constructing accurate 3D representations and calculating the pore size distribution of complex filter media is demonstrated. A simulation tool is presented that allows one to evaluate the performance of different screens without running expensive and sometimes inconclusive experiments, and enhances our understanding of screen performance. This helps to improve sand screen selection to meet performance criteria under a wide variety of conditions. / text
3

Length scales in granular matter

Zhao, Song-Chuan 28 February 2013 (has links)
No description available.
4

Erosion d'un milieu granulaire par un jet / Erosion of a granular bed by jet

Badr, Sarah 05 December 2014 (has links)
Cette thèse consiste en l’étude expérimentale de l’érosion d’un milieu granulaire horizontal par un jet vertical. Dans un premier temps, nous étudions finement le seuil d’érosion. L’injecteur est placé à une distance donnée de l’empilement, et la vitesse débitante du jet est progressivement augmentée jusqu’à l’observation du déplacement des premiers grains à la surface du sédiment. La variation de la distance pour la mesure du seuil conduit le jet à passer par différents régimes d’écoulement, notamment laminaire et turbulent. Une analyse est menée à partir des modèles auto-similaires des jets en régimes laminaire et turbulent, qui prévoient une décroissance de la vitesse axiale en fonction de la distance au point source de l’écoulement appelé origine virtuelle. Il est alors possible d’estimer la vitesse locale au niveau de l’empilement, ce qui permet de montrer que le mécanisme local d’érosion décrit par le nombre de Shields est inertiel et indépendant du régime du jet. Dans un second temps, nous menons une étude sur la morphologie des cratères formés au-delà du seuil d’érosion. A nombre de Shields inertiel croissant, le cratère passe d’une forme entièrement parabolique à une forme plus complexe, composée d’une partie parabolique invariante à l’aplomb du jet et d’une couronne avalancheuse de pente constante sur les flancs. Nous montrons que l’épaisseur de l’empilement n’a pas d’influence sur les caractéristiques des cratères tant que le jet n’atteint pas le support. Lorsque c’est le cas, nous observons alors une troisième forme de cratère composée d’une région centrale sans grains et conservant une partie avalancheuse sur les flancs, raccordée au support par une petite zone parabolique. Nous montrons enfin que les caractéristiques du cratère sont contrôlées par la distance jet-empilement et qu’il est nécessaire de tenir compte de l’écart du nombre de Shields à sa valeur seuil dans cette analyse en fonction de la distance. / The present thesis consists in the experimental study of the erosion of a horizontal granular bed by a vertical jet. In a first part we study in details the erosion threshold. With the injector fixed at a given distance from the granular surface, the mean jet velocity is gradually increased until the displacement of first grains at the bed surface. Depending on the jet-bed distance, different jet flow regimes are observed, from laminar to turbulent. Using self-similar jet models in either laminar or turbulent regimes, which predict the axial velocity decay as a function of the distance from a flow point source called virtual origin, the local velocity at the bed position is estimated, allowing us to show that the local erosion mechanism described by the Shields number is inertial and independent of the jet regime. In a second part, we study the shape of craters formed above erosion threshold. Increasing the Shields number, the crater goes from a shape entirely parabolic to a more complex one with an invariant parabolic region close to the jet axis and a constant avalanching slope further on the side. We show that the bed thickness has no influence on the crater characteristics as long as the jet does not reach the bottom wall. When it does, we observe a third shape for the crater composed of a central flat region without any grains connected to the avalanching crown on the side by a small parabolic crown. We show the crater characteristics are governed by the jet-bed distance and that it is necessary to take into account the difference between the Shields number and its threshold value in this distance analysis.
5

Rhéoépaississement des suspensions denses : mise en évidence de la transition frictionnelle / Shear thickening in dense suspensions : revealing the frictional transition

Clavaud, Cécile 10 July 2018 (has links)
Le rhéoépaississement est un phénomène spectaculaire apparaissant dans certaines suspensions concentrées en particules. Il se manifeste par l’augmentation brutale de la viscosité de la suspension au delà d’une contrainte critique. L’exemple emblématique de suspension présentant ce type de comportement est le mélange d’amidon de maïs et d’eau. Le rhéoépaississement est longtemps resté une énigme, jusqu’à des travaux théoriques et numériques récents proposant un modèle microscopique cohérent. Selon celui-ci, le rhéoépaississement provient d’une transition frictionnelle due à la présence d’une force répulsive entre les grains. Au cours de ma thèse, j’ai réalisé une des premières démonstrations expérimentales directe de ce mécanisme. En m'inspirant de travaux venant du domaine des milieux granulaires, j'ai montré qu'en accord avec le modèle de transition frictionnelle, une suspension rhéoépaississante possède à faible pression granulaire un état non frottant. J'ai ensuite mis en évidence la transition en elle-même dans des suspensions contrôlées de billes de silice dans des solutions salines. Pour cela, j'ai dû développer de nouvelles méthodes de rhéologie à pression imposée. En effet, les rhéomètres standard ne permettent pas d'accéder aux propriétés de frottement des suspensions. Le seul rhéomètre qui le permet n'est pas adapté aux suspensions étudiées ici, qui sont constituées de particules colloïdales. Ce travail ouvre donc la voie au développement d’une nouvelle génération de rhéomètres permettant de mesurer le frottement dans les suspensions colloïdales, un enjeu majeur pour la rhéologie des fluides complexes. / Shear thickening is a spectacular phenomenon which takes place in some dense suspensions. It manifests itself by a brutal increase of the suspension's viscosity above a certain critical stress. The most iconic example of shear-thickening suspensions is cornstarch and water mixes. Shear thickening long remained a mystery, until recent theoretical and numerical works which proposed a consistent microscopic model. This model explains the shear thickening transition as a frictional one due to the presence of a repulsive force between the grains.During my PhD, I provided one of the first direct experimental proofs of this mechanism. Inspired by granular physics, I showed that shear-thickening suspensions possess a frictionless flowing state at low granular pressure, which is consistent with the proposed model. I then evidenced the frictional transition with controlled experiments using suspensions of silica beads in ionic solutions. To do this, I developed new rheological techniques enabling pressure imposed measurements. Indeed, standard rheological tools do not allow access to the frictional properties of suspensions. The only rheometer that does that is not adapted to the suspensions we study here, which are colloidal. This work thus paves the way for the development of a new generation of pressure imposed rheometers, giving access to colloidal suspensions friction, which is a major challenge in complex fluids rheology.
6

A constraint based viscoplastic model of granular material

Nordberg, John January 2011 (has links)
The goal of this thesis is to develop a constraint based viscoplastic fluid model suitable for time-efficient dynamics simulation in 3D of granular matter. The model should be applicable to both the static and dense flow regime and at large pressures. The thesis is performed for UMIT Research Lab at Umeå University. It is a part of the research at UMIT connected to LKAB and Volvo CE and its applications can be in simulating industrial processes or training simulators. My work is based on previous work done by Claude Lacoursière, Martin Servin and Kenneth Bodin. They have created a constraint fluid model based on {\sph} and Claude's PhD. thesis. This model is extended with additional constraints to handle shear forces, which is necessary to model granular material. Some test cases are specified and compared visually to each other and to the results of other work. The model seems to work visually but more analysis and larger systems are needed to be certain. The model should scale well and is well suited for parallellization.
7

Ordering in dense packings

Aristoff, David Gregory 16 June 2011 (has links)
We examine various models of soft matter, and one model of quasicrystals, focusing on abrupt changes as density is varied. We consider in detail two models, one of granular matter and another of confined wires, showing that the models become ordered as density is increased, with crystalline order observed in the former and nematic order observed in the latter. We associate the phenomenon of random close packing with the onset of crystalline order in our granular model, and we conjecture that crumpled wires should exhibit a nematic transition with increasing compaction. We also consider two other models of granular matter: one which describes dilatancy onset as a second order phase transition, and one which describes random loose packing as a precise, well- defined density. Finally, we examine an equilibrium model of quasicrystals with a first order phase transition to a solid phase without any crystalline order. / text
8

Geometric structure and mechanical stability of disordered tetrahedra packings / An experimental X-ray computed tomography study

Neudecker, Max 12 December 2013 (has links)
No description available.
9

Self organisation of sediment transport in alluvial rivers / Auto-organisation du transport sédimentaire dans les rivières alluviales

Abramian, Anaïs 15 November 2018 (has links)
Une rivière alluviale s'écoule sur une épaisse couche de sédiments. Lorsqu'elle construit son lit, elle entraîne, transporte et dépose des sédiments, façonnant ainsi sa propre forme. Ainsi, le couplage entre l'écoulement et le transport sédimentaire régit la taille et la forme de la rivière. Dans cette thèse, nous étudions l'influence du transport sédimentaire sur la forme et la stabilité d'une rivière alluviale. Pour ce faire, nous reproduisons des rivières en laboratoire en laissant s'écouler un liquide visqueux sur un lit granulaire. L'aspect du chenal ainsi formé dépend des débits de liquide et de sédiment injectés en entrée. A l'aide de ces expériences, nous mettons en évidence les deux mécanismes qui contrôlent l'équilibre d'une rivière. D'abord, la gravité entraîne les grains vers le centre du chenal. Ce mécanisme érode continuellement les berges de la rivière, et tend donc à l'élargir. Cependant, les collisions d'un grain avec le lit dévient sa trajectoire dans la direction transverse à l'écoulement. Les grains se comportent ainsi comme des marcheurs aléatoires, qui, collectivement, diffusent vers les berges de la rivière. A l'équilibre, cette diffusion compense la gravité, et fixe ainsi la forme de la rivière. Lorsque la diffusion prend le dessus sur la gravité, elle peut induire une instabilité. En effet, si on perturbe un lit sédimentaire avec des stries longitudinales, le cisaillement fluide est plus faible là où l'écoulement est moins profond. Par conséquent, les grains diffusent depuis les creux de la perturbation vers ses crêtes. Cette rétroaction déstabilisante pourrait générer de nouveaux chenaux, et expliquer la formation des rivières en tresses. / An alluvial river builds its own bed with the sediment it transports. The channel bounds the flow, which in turns deforms the channel through erosion and deposition. This coupling between flow and sediment transport selects the shape and the size of the river. In this manuscript, we investigate it using laboratory experiments. The first ingredient of this coupling is gravity, which pulls the moving grains towards the center of the channel, thus continually eroding the banks. However, due to the roughness of the bed, the trajectory of a moving grain fluctuates across the stream. The bedload layer is therefore a collection of random walkers which diffuse towards the less active areas of the bed. In a river at equilibrium, this diffusion counteracts gravity to maintain the banks. When gravity and diffusion are out of balance, their interaction causes an instability. Indeed, if an initially flat bed of sediment is perturbed with longitudinal streaks, the flow-induced shear stress is weaker where the flow is shallower. Therefore, bedload diffusion induces a sediment flux towards the crests of the perturbation. This positive feedback induces an instability which can generate new channels. We suggest that this mechanism could initiate the braiding of alluvial rivers.
10

On Impact Dynamics under Complex or Extreme Conditions

Kouraytem, Nadia 11 1900 (has links)
The impact of a spherical object onto a surface of a liquid, solid or granular material, is a configuration which occurs in numerous industrial and natural phenomena. The resulting dynamics can produce complex outcomes and often occur on very short time-scales. Their study thereby requires high-speed video imaging, as is done herein. This three-part dissertation investigates widely disparate but kindred impact configurations, where the impacting object is a solid steel sphere, or a molten metal droplet. The substrate, on the other hand, is either granular material, a liquid, or solid ice. Therefore both fluid mechanics and thermodynamics play a key role in some of these dynamics. Part I, investigates the penetration depth of a steel sphere which impacts onto a granular bed containing a mixture of grains of two different sizes. The addition of smaller grains within a bed of larger grains can promote a “lubrication” effect and deeper penetration of the sphere. However, there needs to be enough mass fraction of the smaller grains so that they get lodged between the larger grains and are not simply like isolated rattlers inside the voids between the larger grains. This lubrication occurs even though the addition of the small grains increases the overall packing fraction of the bed. We compare the enhanced penetration for the mixtures to a simple interpolative model based on the results for monodispersed media of the constitutive sizes. The strongest lubrication is observed for large irregular shaped Ottawa sand grains, which are seeded with small spherical glass beads. Part II, tackles the topic of a molten metal drop impacting onto a pool of water. When the drop temperature is far above the boiling temperature of water, a continuous vapor layer can form at the interface between the metal and water, in what is called the Leidenfrost phenomenon. This vapor layer can become unstable forming what is called a vapor explosion, which can break up the molten metal drop. We study the details of these explosions and characterize the metal debris. We contrast the results for two different metals, i.e. tin and a special metal alloy called Field’s metal. For tin the drop solidifies and forms a porous foam-like solid, whereas the Field’s metal breaks up into a multitude of spherical beads, with a range of sizes as small as a few microns. We attribute this difference to the much lower melting point of the Field’s metal, which is only 60oC, compared to 230oC for the tin. This allows more fragmentation of the Field’s metal drop before it solidifies. When the temperature of the impacting metal is increased, high-speed imaging reveals a sequence of up to three vapor explosions, each of increasing intensity. We measure the acceleration of the vapor interface and compare the size-distribution of the microbeads to the fastest growing instability mode of the corresponding Rayleigh-Taylor instability. Part III, investigates the coefficient of restitution when a steel sphere impacts on an ice surface. As observed in earlier studies the restitution coefficient is largest for the smallest impact velocities, where the surface is not greatly fragmented. Our focus is on greatly heating the sphere up to 400oC to investigate how the thermal load affects the short term interaction of the sphere with the ice. We see a clear trend where hotter spheres rebound less than cold spheres. We also track the speed of ice-fragments ejected during the earliest stages of the impact.

Page generated in 0.0656 seconds