591 |
Synthesis and properties of graphene quantum dots and nanomeshes / Synthèse et propriétés de boîtes quantiques et de nanomeshes de graphèneLavie, Julien 08 October 2018 (has links)
La modification des propriétés du graphène, notamment l’ouverture d’une bande interdite par la nanostructuration, est un véritable enjeu pour la physique et pour les applications du graphène. La nanostructuration peut se faire suivant l’approche « top-down » ou « bottom-up ». Au cours de cette thèse nous nous sommes intéressés à la seconde approche. L’approche « bottom-up » permet de contrôler à l’atome près la structure des matériaux. L’objectif de cette thèse est de fabriquer par synthèse chimique des boites quantiques de graphène et des motifs graphéniques contenant un réseau périodique de trous (nanomesh) et d’en étudier les propriétés physiques. Dans une première partie, une « famille » de nanoparticules de graphène a été préparée par synthèse organique via des réactions de Diels-Alder et de Scholl et les propriétés optiques ont été étudiées sur des solutions et à l’échelle de la molécule unique. Dans une deuxième partie, un nouveau type de structures graphéniques intermédiaires entre les boites quantiques et les nanorubans, des nano-bâtonnets de graphène (nanorods) ont été synthétisés. Enfin, plusieurs précurseurs ont été synthétisés pour la réalisation de nanomeshs de graphène. Ces précurseurs permettront d’obtenir, en utilisant le dépôt chimique en phase vapeur dans la chambre d’un microscope à effet tunnel, des nanomesh de graphène présentant des structures différentes. / The manipulation of the electronic properties of graphene, and in particular the bandgap opening by nano-patterning, is a crucial issue for both physics and applications. The nanostructuration can be done either through the top-down approach or the bottom-up approach. This bottom-up approach allows controlling at the atomic level the structure of the materials. The aim of this thesis is to prepare graphene quantum dots and graphene nanomeshes (regular arrays of holes in a graphene sheet) by chemical synthesis, and to study their physical properties. In the first part, a “family” of graphene quantum dots was prepared with organic chemistry via Diels-Alder and Scholl reactions and the optical properties were studied both in solution and at the single molecule scale. In the second part, a new type of graphenic structures intermediate between quantum dots and nanoribbons were synthesized and we named them “graphene nanorods”. These objects are one dimensional but have a controlled length compared to nanoribbons prepared via polymerization. Finally, various precursors were synthesized to create graphene nanomeshes. These precursors will allow the formation, using chemical vapor deposition in a scanning tunneling microscope chamber, of nanomeshes exhibiting different structures and morphology.
|
592 |
Anthracenylporphyrin based building blocks for the bottom-up fabrication of nitrogen-doped graphene nanostructures / Briques de construction à base d’anthracénylporphyrines pour la fabrication bottom-up de nanostructures de graphène dopées à l’azotePijeat, Joffrey 11 October 2019 (has links)
La synthèse de graphène par approche « bottom-up » fait l’objet de nombreux travaux de recherche ayant pour but de contrôler les propriétés électroniques et optiques de ce matériau par la fabrication de nanostructures avec une précision atomique. D’autre part, le contrôle de dopant dans le graphène permettant d’en moduler les propriétés suscite un grand intérêt et dans ce contexte l’utilisation de porphyrines avec un taux d’azote contrôlé est attrayante. Par leurs ressemblances structurelles, les porphyrines π-étendues peuvent être considérées comme des nanoparticules de graphène dopées à l’azote (GQDs) présentant de fortes propriétés infrarouge tandis que les briques de construction à base de porphyrines peuvent être utilisées pour la synthèse sur surface de deux type de nanoarchitectures de graphene appélées nanorubans (GNRs) et nanomèches (GNMs). Cette thèse a pour objectif de développer la synthèse de porphyrines à base d’anthracenes et de les utiliser comme précurseurs pour la fabrication de nanostructures. La première partie de cette thèse est dédiée à la synthèse organique de différentes anthracenylporphyrines et à l’étude de leurs assemblages sur surface dans la chambre d’un microscope à effet tunnel. La seconde partie est dédiée à l’étude de formation de porphyrines π-étendues via une méthode pyrolyse flash pouvant activer thermiquement des réactions de couplage par déhydrogenation entre des hydrocarbures aromatiques polyycliques (PAHs) et des porphyrines. La dernière partie est dédiée à la modification post synthétique d’une tetrabromoanthracenylporphyrine par addition de PAHs via la réaction de couplage de Suzuki-Miyaura et à la caractérisation des propriétés optiques de ces porphyrines nouvellement formées. / The synthesis of graphene via bottom-up approach is a hot topic of research that aims to control the electronic and optical properties of this material by the fabrication of atomically precised nanostructures. Moreover, the control of dopant in graphene is of great interest to modulate the properties of the material. In this context, the contribution of porphyrins with a controlled content of nitrogen is attractive in this context. Because of structural similarities with graphene quantum dots (GQDs), π-extented porphyrins can be regarded as nitrogen-doped GQD with promising NIR properties. Porphyrins are convenient building blocks for the synthesis on surface of nanoarchitectures of graphene called nitrogen-doped Graphene Nanoribbons (GNRs) and Graphene NanoMeshes (GNMs). This thesis aims to develop the synthesis of symmetrical and robust porphyrins with anthracenes and to use them as precursors for the fabrication of nanostructures. The first part of this thesis is dedicated to the organic synthesis of variety of anthracenylporphyrins and the study of their assemblies on surface in a chamber of a Scanning Tunneling Microscope. The second part is dedicated to the study of formation of π-extended porphyrins via a method of flash pyrolysis able to thermally activate dehydrogenative coupling reactions between Polycyclic Aromatic Hydrocarbons (PAHs) and porphyrins. The last part is dedicated to the post synthetic modification of a tetrabromoanthracenylporphyrin with additional PAHs via Suzuki-Miyaura coupling and the characterization of the optical properties of the resulting porphyrins.
|
593 |
The selective low cost gas sensor based on functionalized graphene / Un capteur de gaz sélectif et bas coût par l’emploi de graphène fonctionnaliséWoo, Heechul 29 September 2016 (has links)
Les progrès récents dans les nanomatériaux présentent un fort potentiel pour la réalisation de capteurs de gaz avec de nombreux avantages tels que : la grande sensibilité de détection de molécule unique, le faible coût et la faible consommation d'énergie. Le graphène, isolé en 2004, est l'un des meilleurs candidats prometteurs pour le développement de futurs nanocapteurs en raison de sa structure à deux dimensions, sa conductivité élevée et sa grande surface spécifique. Chaque atome de la monocouche de graphène peut être considéré comme un atome de surface, capable d'interagir même avec une seule molécule de l'espèce gazeuse ou de vapeur cible, ce qui conduit finalement à un capteur ultrasensible.Dans cette thèse, des composants à base de graphène ont été fabriqués et caractérisés. Les films de graphène ont été synthétisés par dépôt chimique à phase vapeur (CVD) sur des substrats de verre. La spectroscopie Raman a été utilisée pour analyser la qualité et le nombre de couches de graphène. La microscope à force atomique (AFM) et la microscopie électronique à balayage (MEB) ont été également réalisées pour analyser la qualité du graphène. Après la caractérisation de couches de graphène, des dispositifs résistifs à base de graphène ont été fabriquées : quatre électrodes identiques ont été évaporées thermiquement et directement sur le film de graphène comme des électrodes métalliques. La caractérisation électrique a été réalisée à l'aide de Keithley-4200.La réponse de dispositif Intrinsèque a été étudiée sous différents conditions (pression, humidité, exposition à la lumière). Le dispositif a été fonctionnalisé de manière non covalente avec le complexe organométallique (Ru (II) trisbipyridine) et son effet sous exposition à la lumière a été étudié. La réponse de dispositif était reproductible même après de nombreux cycles en présence et en absence de la lumière. Les approches théoriques et expérimentales ainsi que les résultats obtenus au cours de cette thèse ouvrent un moyen de comprendre et de fabriquer des futurs dispositifs de détection de gaz à base du graphène fonctionnalisé de manière non covalente / Recent advances in nanomaterials provided a strong potential to create a gas sensor with many advantages such as high sensitivity of single molecule detection, low cost, and low power consumption. Graphene, isolated in 2004, is one of the best promising candidate for the future development of nanosensors applications because of its atom-thick, two-dimensional structures, high conductivity, and large specific surface areas. Every atom of a monolayer graphene can be considered as a surface atom, capable of interacting even with a single molecule of the target gas or vapor species, which eventually results in the ultrasensitive sensor response.In this thesis work, graphene films were synthesized by Chemical Vapor Deposition (CVD) on the glass substrate. Raman spectroscopy was used to analyze the quality and number of layers of graphene. Atomic Force Microscope (AFM) and Scanning Electron Microscopy (SEM) were also performed to analyze the quality of graphene. After the characterization of graphene films, graphene based resistive devices (four identical electrodes are thermally evaporated directly onto the graphene film as metal electrodes) were fabricated. The electrical characterization has been carried out using Keithley-4200.Intrinsic device response was studied with different external condition changes (pressure, humidity, light illumination). The device was non-covalently functionalized with organometallic complex (Ru(II) trisbipyridine) and the its light exposure response was studied. The observed device response was reproducible and similar after many cycles of on and off operations. The theoretical and experimental approaches and the results obtained during the thesis are opening up a way to understand and fabricate future gas sensing devices based on the non-covalentely functionalized graphene.
|
594 |
Méthodologie de fabrication de transistors à base de Graphène : application aux composants optoélectroniques hyperfréquences / Fabrication methodology of Graphene-based transistors : application to high-frequency optoelectronic devicesMzali, Sana 08 December 2016 (has links)
Depuis sa découverte en 2004, le graphène n’a cessé de capter l’intérêt de la communauté scientifique grâce à ses innombrables propriétés et à la diversité de ses applications potentielles. Néanmoins, son implémentation à l’échelle industrielle exige encore beaucoup de contraintes et notamment concernant la stabilité de ses performances.L’objectif de cette thèse est de développer un procédé de fabrication de dispositifs intégrant une couche de graphène faiblement dopée et présentant des caractéristiques électriques stables. Le graphène, étant un matériau extrêmement sensible à l’environnement, il s’est avéré primordial de le protéger afin d’avoir un bon contrôle sur ses propriétés. Pour ce faire, plusieurs approches technologiques ont été abordées et analysées à l’aide d’une étude statistique des caractéristiques de plus de 500 transistors. Le procédé optimal intègre une couche de « protection » du graphène réalisée après son transfert et la passivation des dispositifs fabriqués avec une couche d’oxyde. Grâce à cette méthode, 75% des transistors fabriqués sont fonctionnels, présentent une faible hystérèse et sont stables dans le temps, ce qui constitue des critères indispensables pour l’intégration du graphène dans des composants discrets en particulier pour l’optoélectronique.Par la suite, le procédé technologique développé a été adapté à la fabrication de lignes coplanaires à base de graphène pour la photodétection hyperfréquence. Des valeurs de photo-courant, proches de celles de la littérature (0.15 mA/W), ont été mesurées avec un laser 1.55 µm modulé à des fréquences allant jusqu’à 40 GHz. Cette technologie est maintenant évaluée pour la fabrication de mixeurs optoélectroniques haute fréquence. / Since its discovery in 2004, graphene has attracted the attention of the scientific community due to its unique properties as well as the diversity of its potential applications. Nevertheless, its implementation at industrial scale still requires many challenges including its performance stability.The objective of my PhD is to develop a technological process for the fabrication of devices integrating low-doped graphene and exhibiting stable electrical characteristics. As graphene is extremely sensitive to the environment, it is crucial to protect its surface to accurately control its properties. To do this, several technological approaches have been analyzed using the statistical characteristics of more than 500 transistors. The optimal process integrates a “protection” layer after graphene transfer and the passivation of the fabricated devices with an oxide layer. 75% of the passivated transistors were functional, with low hysteresis and time-stable performances. These criteria are essential for the integration of graphene in discrete components, in particular for optoelectronic devices.Subsequently, the technological process developed was adapted for the fabrication of graphene based coplanar waveguides for high frequency photodetection. We report on a measured photocurrent of 0.15 mA/W with a 1.55 µm laser modulated up to 40 GHz. This technology is currently studied for the fabrication of high frequency optoelectronic mixers
|
595 |
High sensitivity nanotechnology gas sensing deviceTanu, Tanu 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The nanotechnology materials have been used for high sensitivity sensing devices due to their ability to alter their properties in response to the environmental parameters such as temperature, pressure, gas, electromagnetic, and chemicals. The features of employing nanoparticles on top of graphene thin film have driven the hypothesis of achieving high sensing nanotechnology devices.
This study demonstrates a novel approach for designing a low noise nanoparticle based gas sensing device with internet of things (IoT) capability. The system is capable of minimizing cross-talk between multiple channels of amplifiers arranged on one chip using guard rings. Graphene mono-layer is utilized as sensing material with the sensitivity catalyzed by addition of gold nano-particles on its surface. The signal from the sensing unit is received by an offset cancellation amplifying system using a system on chip (SoC) approach. IoT capability of the sensing device is developed using FRDM K64f micro-controller board which sends messages on IoT platform when a gas is sensed. The message is received by an application created and sent as an email or message to the user.
This study details the mathematical models of the graphene based gas sensing devices, and the interface circuitry that drives the differential potentials, resulting from the sensing unit. The study presents the simulation and practical model of the device, detailing the design approach of the processing unit within the SoC system and wireless implementation of it.
The sensing device was capable of sensing gas concentration from 5% to 100% using both the resistive and capacitive based models. The I-V characteristics of the FET sensing device was in agreeable with the other models. The SoC processing unit was designed using cadence tools, and simulation results showed very high CMRR that enable the amplifier to sense a very low signal received from the gas sensors. The cross talk noise was reduced by surrounding guard rings around the amplifier circuits. The layout was accomplished with 45nm technology and simulation showed an offset voltage of 17μV.
|
596 |
Design and Fabrication of High Capacity Lithium-Ion Batteries using Electro-Spun Graphene Modified Vanadium Pentoxide CathodesAhmadian, Amirhossein 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Electrospinning has gained immense interests in recent years due to its potential application in various fields, including energy storage application. The V2O5/GO as a layered crystal structure has been demonstrated to fabricate nanofibers with diameters within a range of ~300nm through electrospinning technique. The porous, hollow, and interconnected nanostructures were produced by electrospinning formed by polymers such as Polyvinylpyrrolidone (PVP) and Polyvinyl alcohol (PVA), separately, as solvent polymers with electrospinning technique.
In this study, we investigated the synthesis of a graphene-modified nanostructured V2O5 through modified sol-gel method and electrospinning of V2O5/GO hybrid. Electrochemical characterization was performed by utilizing Arbin Battery cycler, Field Emission Scanning Electron Microscopy (FESEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TGA), Mercury Porosimetry, and BET surface area measurement.
As compared to the other conventional fabrication methods, our optimized sol-gel method, followed by the electrospinning of the cathode material achieved a high initial capacity of 342 mAh/g at a high current density of 0.5C (171 mA/g) and the capacity retention of 80% after 20 cycles. Also, the prepared sol-gel method outperforms the pure V2O5 cathode material, by obtaining the capacity almost two times higher.
The results of this study showed that post-synthesis treatment of cathode material plays a prominent role in electrochemical performance of the nanostructured vanadium oxides. By controlling the annealing and drying steps, and time, a small amount of pyrolysis carbon can be retained, which improves the conductivity of the V2O5 nanorods. Also, controlled post-synthesis helped us to prevent aggregation of electro-spun twisted nanostructured fibers which deteriorates the lithium diffusion process during charge/discharge of batteries.
|
597 |
Photo Processing and Microfabrication of Graphene Oxide / 酸化グラフェンの光プロセシングと微細加工Tu, Yudi 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21106号 / 工博第4470号 / 新制||工||1695(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 杉村 博之, 教授 邑瀬 邦明, 教授 山田 啓文 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
598 |
Plasma Enhanced Synthesis of Novel N Doped Vertically Aligned Carbon Nanofibers-3D Graphene hybrid structureMishra, Siddharth 12 July 2019 (has links)
No description available.
|
599 |
Deposition of Nanoparticles or Thin Films via Magnetron Sputtering Towards Graphene Surface Functionalization and Device FabricationLarson, Bridget Jul 05 August 2019 (has links)
No description available.
|
600 |
Chondroitin Sulfate Hydrogels for Total Wound Care DevicesGoswami, Tushar January 2019 (has links)
No description available.
|
Page generated in 0.0598 seconds