571 |
Interface Effects Enabling New Applications of Two-Dimensional MaterialsSattar, Shahid 05 1900 (has links)
Interface effects in two-dimensional (2D) materials play a critical role for the electronic
properties and device characteristics. Here we use first-principles calculations
to investigate interface effects in 2D materials enabling new applications. We first
show that graphene in contact with monolayer and bilayer PtSe2 experiences weak
van der Waals interaction. Analysis of the work functions and band bending at the
interface reveals that graphene forms an n-type Schottky contact with monolayer
PtSe2 and a p-type Schottky contact with bilayer PtSe2, whereas a small biaxial
tensile strain makes the contact Ohmic in the latter case as required for transistor
operation. For silicene, which is a 2D Dirac relative of graphene, structural buckling
complicates the experimental synthesis and strong interaction with the substrate perturbs
the characteristic linear dispersion. To remove this obstacle, we propose solid
argon as a possible substrate for realizing quasi-freestanding silicene and argue that
a weak van der Waals interaction and small binding energy indicate the possibility to
separate silicene from the substrate. For the silicene-PtSe2 interface, we demonstrate
much stronger interlayer interaction than previously reported for silicene on other
semiconducting substrates. Due to the inversion symmetry breaking and proximity
to PtSe2, a band gap opening and spin splittings in the valence and conduction bands
of silicene are observed. It is also shown that the strong interlayer interaction can be
effectively reduced by intercalating NH3 molecules between silicene and PtSe2, and
a small NH3 discussion barrier makes intercalation a viable experimental approach.
Silicene/germanene are categorized as key materials for the field of valleytronics due
to stronger spin-orbit coupling as compared to graphene. However, no viable route
exists so far to experimental realization. We propose F-doped WS2 as substrate that
avoids detrimental effects and at the same time induces the required valley polarization.
The behavior is explained by proximity effects on silicene/germanene due to
the underlying substrate. Broken inversion symmetry in the presence of WS2 opens
a substantial band gap in silicene/germanene. F doping of WS2 results in spin polarization,
which, in conjunction with proximity-enhanced spin orbit coupling, creates
sizable spin-valley polarization. For heterostructures of silicene and hexagonal boron
nitride, we show that the stacking is fundamental for the details of the dispersion
relation in the vicinity of the Fermi energy (gapped, non-gapped, linear, parabolic)
despite small differences in the total energy. We also demonstrate that the tightbinding
model of bilayer graphene is able to capture most of these features and we
identify the limitations of the model.
|
572 |
Removing heavy metals from wastewater using graphene oxideWang, Ying January 2021 (has links)
Heavy metals in wastewater can cause serious environmental problems and could beharmful to the human body. Therefore, heavy metals need to be removed from thewastewater. Coagulation based methods are popularly used nowadays with provedeffects. New methods such as the application of nanomaterials have brought morepossibilities to increase the removal effects for certain heavy metals. Among thesenanomaterials, graphene oxide has gained a lot of interest because of its large surfacearea and unique structure. Moreover, graphene oxide is an environmentally friendlymaterial. However, most of the reported studies did not use real wastewater samplesbut simulated ones prepared in labs. Therefore, the removal effects need to beexperimentally evidenced by using real wastewater samples. In this project, I studiedthe removal effects of pristine and modified graphene oxide using wastewatercollected at the wastewater treatment plant in Sundsvall (Fillan wastewater treatmentplant). Moreover, I have also studied the heavy metal removal effects of combinedcoagulation method and graphene oxide. Results have shown that graphene oxide hassimilar removal effects to the coagulation method, indicating the enormous potentialof graphene oxide in wastewater treatment. / <p>2021-09-19</p>
|
573 |
Synthesis and Analysis of Metal Oxide-Graphene CompositesCarey, McKenna Kathryn 04 May 2021 (has links)
No description available.
|
574 |
Probing the Active Site of CNx Catalysts for the Oxygen Reduction Reaction in Acidic Media: A First-Principles StudyZhang, Qiang 28 September 2018 (has links)
No description available.
|
575 |
Depozice Ga a GaN nanostruktur na křemíkový a grafenový substrát / The deposition of Ga and GaN nanostructures on silicon and graphene substrateMareš, Petr January 2014 (has links)
Presented thesis is focused on the study of properties of Ga and GaN nanostructures on graphene. In the theoretical part of the thesis a problematics of graphene and GaN fabrication is discussed with a focus on the relation of Ga and GaN to graphene. The experimental part of the thesis deals with the depositions of Ga on transferred CVD-graphene on SiO2. The samples are analyzed by various methods (XPS, AFM, SEM, Raman spectroscopy, EDX). The properties of Ga on graphene are discussed with a focus on the surface enhanced Raman scattering effect. Furthermore, a deposition of Ga on exfoliated graphene and on graphene on a copper foil is described. GaN is fabricated by nitridation of the Ga structures on graphene. This process is illustrated by the XPS measurements of a distinct Ga peak and the graphene valence band during the process of nitridation.
|
576 |
Nitride nanowire light-emitting diode / Diodes électroluminescentes à nanofils nitruresGuan, Nan 12 October 2018 (has links)
Les nanofils nitrures présentent des propriétés optoélectroniques extraordinaires et sont considérés comme des matériaux prometteurs pour des diodes électroluminescentes (LEDs), grâce à leur haute qualité cristalline, leurs surfaces non-polaires, leur bonne flexibilité mécanique, leur rapport d’aspect élevé, etc.Cette thèse adresse la croissance, la fabrication, les caractérisations optiques et électriques et la simulation optique des dispositifs à base de nanofils nitrures, avec un accent particulier sur les LEDs à nanofils.Premièrement, cette thèse présente la croissance par épitaxie en phase vapeur aux organométalliques de nanofils nitrures cœur-coquille auto-assemblés contenant des puits quantiques InGaN/GaN sur les facettes plan m avec différentes concentrations d’In. Puis est décrite la fabrication de LEDs utilisant ces nanofils suivant deux différentes stratégies d’intégration (intégrations planaires et verticales).L’intégration planaire est basée sur des nanofils uniques dispersés horizontalement. J’ai proposé une plateforme photonique intégrée composée d’une LED à nanofil, d’un guide d’onde optimisé et d’un photodétecteur à nanofil. J’ai également développé un système d’alignement des nanofils.L’intégration verticale a pour objectif la réalisation de LEDs flexibles reposant sur une assemblée de nanofils verticaux encapsulées dans des polymères. Je montre que ceci permet la fabrication de LEDs flexibles monochromatiques, bi-couleurs ou blanches.Les nanofils épitaxiés sur des matériaux 2D par épitaxie de van de Waals sont faciles à décoller de leur substrat natif. Avec cette motivation, dans la dernière partie de cette thèse, j’ai étudié la croissance organisée des nanofils GaN sur du graphène micro et nano-structuré utilisant l’épitaxie par jets moléculaires. / Nitride nanowires exhibit outstanding opto-electronic and mechanical properties and are considered as promising materials for light-emitting diodes (LEDs), thanks to their high crystalline quality, non-polar facets, good mechanical flexibility, high aspect ratio, etc.This Ph.D. thesis addresses the growth, the device fabrication, the optical and electrical characterizations and the optical simulations of III-nitride NW devices, with a special emphasis on the LED applications.First, this thesis presents the growth of m-plane InGaN/GaN quantum wells with different In concentrations in self-assembled core-shell nanowires by metal-organic chemical vapor deposition. Then, by using these nanowires, LED devices based on two different integration strategies (namely, in-plane and vertical integration) are demonstrated.The in-plane integration is based on the horizontally dispersed single nanowires. I have proposed a basic integrated photonic platform consisting of a nanowire LED, an optimized waveguide and a nanowire photodetector. I have also developed a nanowire alignment system using dielectrophoresis.The vertical integration targets the fabrication of flexible LEDs based on vertical nanowire arrays embedded in polymer membranes. Flexible monochromatic, bi-color, white LEDs have been demonstrated. Their thermal properties have been analyzed.The nanowires grown on 2D materials by van der Waals epitaxy are easy to be lifted-off from their native substrate, which should facilitate the fabrication of flexible nanowire devices. With this motivation, in the last part of this thesis, I have investigated the selective area growth of GaN NWs on micro- and nano- scale graphene by molecular beam epitaxy.
|
577 |
Une nouvelle génération d'étalons quantiques fondée sur l'effet Hall quantique / a new generation of quantum standard based on the quantum hall effectBrun-Picard, Jérémy 07 December 2018 (has links)
Le futur Système International d'unités, fondé sur des constantes fondamentales, va permettre de profiter pleinement des étalons quantiques de résistance, de courant et de tension qui sont reliés à la constante de planck et à la charge élémentaire. Dans cette thèse, nous avons développé et étudié un étalon de résistance fondé sur l'effet Hall quantique (EHQ) dans du graphène obtenu par dépôt chimique en phase vapeur (propane/hydrogène) sur substrat de carbure de silicium. Nous avons réussi à montrer, pour la première fois, qu'un étalon de résistance en graphène pouvait fonctionner à des conditions expérimentales plus pratiques que son homologue en GaAs/AlGaAs, c'est-à-dire à des températures plus élevées (T⋍10 K), des champs magnétiques plus faibles (B ⋍ 3,5 T) et des courants de mesures plus importants (I⋍500 μA). Dans une optique de compréhension et d'amélioration, nous avons analysé la reproductibilité du processus de fabrication de barres de Hall, testé une méthode de modification de la densité électronique et étudié les mécanismes de dissipation en régime d'EHQ.Dans une seconde partie, nous avons démontré qu'il était possible de réaliser une source de courant quantique programmable et versatile, directement reliée à la charge élémentaire, en combinant les deux étalons quantiques de tension et de résistance dans un circuit quantique intégrant un comparateur cryogénique de courant. Des courants ont ainsi pu être générés dans une gamme allant de 1 μA jusqu'à 5 mA avec une incertitude relative jamais atteinte de 10⁻⁸. Nous avons également prouvé que cet étalon de courant, réalisant la nouvelle définition de l'ampère, pouvait être utilisé pour étalonner un ampèremètre. / The future International System of Units, based on fundamental constants, will allow to take full advantage of the quantum standards of resistance, current and voltage that are linked to the planck constant and the elementary charge only.In this thesis, we have developed and studied a resistance standard based on the quantum Hall effect in graphene obtained by chemical vapor deposition (propane/hydrogen) on silicon carbide substrate. For the first time we were able to show that a graphene resistance standard could operate at more practical experimental conditions than its counterpart in GaAs/AlGaAs, ie at higher temperatures (T⋍10 K), weaker magnetics fields (B ⋍ 3,5 T) and larger measurement currents (I⋍500 μA). From an understanding and improvement perspective, we have analyzed the fabrication process of the Hall bar and its reproducibility, tested a method to modify the electronic density, and investigated the quantum Hall effect dissipation mechanisms.In a second part, we have demonstrated that it was possible torealize a programmable and versatile quantum current source from the elementary charge, by combining the two quantum standards of voltage and resistance in a quantum circuit integrating a cryogenic current comparator. Currents were generated in the range from 1 μA to 5 mA, with a relative uncertainty never achieved before of 10⁻⁸. We have also showed that this current standard, realizing the new definition of the ampere, could be used to calibrate an ammeter.
|
578 |
Transport électronique et thermique dans des nanostructures / Electronic and thermal transport in nanostructuresFrance-Lanord, Arthur 21 November 2016 (has links)
La miniaturisation continue des composants électroniques rend indispensable la connaissance des mécanismes de transport à l’échelle nanométrique. Alors que les processus simples de conduction dans les matériaux homogènes sont bien assimilés, la compréhension du transport à l’échelle nanométrique dans les systèmes hétérogènes reste à améliorer. Par exemple, le couplage entre courant, résistance et flux de chaleur dans des nanostructures doit être clarifié. Dans ce contexte, le sujet de thèse est centré autour du développement et de l’application de méthodes de calcul avancées pour la prédiction des propriétés de transport électronique et thermique à l’échelle nanométrique. Dans une première partie, nous avons paramétré un modèle de potentiel inter-atomique classique adapté à la description de systèmes multicomposants, afin de modéliser les propriétés structurelles, vibratoires et de transport de chaleur de la silice, ainsi que du silicium. Pour ce faire, une approche d’optimisation automatisée et reproductible a été mise en place. En guise d’exemple, nous avons calculé la dépendance en température de la résistance de Kapitza pour le système silice amorphe - silicium cristallin, ce qui a permis de souligner l’importance d’une description structurelle précise de l’interface. Dans une seconde partie, nous avons étudié la décomposition modale de la conductivité thermique du graphène supporté par un substrat de silice amorphe. Plus précisément, l’influence de l’état de surface (hydroxilation, etc) sur le transport thermique a été quantifiée. Le rôle déterminant des excitations collectives de phonons a été mis au jour. Finalement, dans une dernière partie, les propriétés de transport électronique du graphène supporté par une bi-couche de silice, système récemment observé expérimentalement, ont été étudiées. L’influence d’ondulations dans la couche de graphène ou dans le substrat, souvent présentes dans les échantillons réels et dont l’amplitude et la longueur d’onde peuvent être contrôlées, a été dégagée. Nous avons également modélisé le champ électrique généré par une grille, et déterminé son incidence sur le transport électronique. / The perpetual shrinking of microelectronic devices makes it crucial to have a proper understanding of transport mechanisms at the nanoscale. While simple effects are now well understood in homogeneous materials, the understanding of nanoscale transport in heterosystems needs to be improved. For instance, the relationship between current, resistance, and heat flux in nanostructures remains to be clarified. In this context, the subject of the thesis is centered around the development and application of advanced numerical methods used to predict electronic and thermal conductivities of nanomaterials. This manuscript is divided into three parts. We begin with the parameterization of a classical interatomic potential, suitable for the description of multicomponent systems, in order to model the structural, vibrational, and thermal transport properties of both silica and silicon. A well-defined, reproducible, and automated optimization procedure is derived. As an example, we evaluate the temperature dependence of the Kapitza resistance between amorphous silica and crystalline silicon, and highlight the importance of an accurate description of the structure of the interface. Then, we have studied thermal transport in graphene supported on amorphous silica, by evaluating the mode-wise decomposition of thermal conductivity. The influence of hydroxylation on heat transport, as well as the significant role played by collective excitations of phonons, have come to light. Finally, electronic transport properties of graphene supported on quasi-two-dimensional silica, a system recently observed experimentally, have been investigated. The influence on transport properties of ripples in the graphene sheet or in the substrate, which often occur in samples and whose amplitude and wavelength can be controlled, has been evaluated. We have also modeled electrostatic gating, and its impact on electronic transport.
|
579 |
Příprava a charakterizace nanomateriálů pro elektrochemické ukládání energie / Preparation and characterization of nanomaterials for electrochemical energy storageBouša, Milan January 2017 (has links)
Graphene research is nowadays one of the worldwide most prominent fields of interest in material science due to many extraordinary properties of graphene and related materials. However, the different techniques of synthesis and subsequent handling and/or treatment have a substantial impact on the properties of the graphene and thus a lot of efforts have been focused on developing of the advanced methods for graphene preparation and characterization. Graphene can be easily produced by oxidation and consequent exfoliation of the bulk graphite; however, resulting graphene oxide needs to be reduced back to graphene-like structure due to partial restoration of sp2 network. Herein, a detailed study of the structural evolution of the graphene oxide during electrochemical treatment has been performed using X-ray photoelectron, Raman and infrared spectroscopies and the results were compared with non-oxidized graphene nano-platelets. Additionally, graphene oxide in composite with LiFePO4 olivine material, which is electrochemically almost inactive in a freshly made state, has been tested by repeated electrochemical cycling. Using various electrochemical methods, the progressive electrochemical activity enhancement has been observed and spontaneous graphene reduction was identified as responsible for this...
|
580 |
Nickel-based Nanomaterials for Electrochemical SupercapacitorsAlhebshi, Nuha 02 November 2015 (has links)
The demand for energy storage technologies is rapidly increasing in portable electronics, transportation, and renewable energy systems. Thus, the objective of this research is to develop and enhance the performance of Ni-based electrochemical supercapacitors by optimizing synthesis conditions and design of the electrode materials. Conventional and on-chip supercapacitors were developed with notable performance enhancement.
For conventional supercapacitors, a uniform and conformal coating process was developed to deposit Ni(OH)2 nanoflakes on carbon microfibers in-situ by a simple chemical bath deposition at room temperature. The microfibers conformally-coated with Ni(OH)2 make direct physical contacts with essentially every single nanoflakes, leading to more efficient electron transport. Using this strategy, we have achieved devices that exhibit five times higher specific capacitance compared to planar (non-conformal) Ni(OH)2 nanoflakes electrodes prepared by drop casting of Ni(OH)2 on the carbon microfibers (1416 F/g vs. 275 F/g).
For on-chip storage applications, microfabricated supercapacitors were developed using a combination of top-down photolithography and bottom-up CBD. The resulting Ni(OH)2 micro-supercapacitors show high-rate redox activity up to 500 V/s and an areal cell capacitance of 16 mF/cm2 corresponding to a volumetric stack capacitance of 325 F/cm3. This volumetric capacitance is 2-fold higher than carbon and metal oxide based micro-supercapacitors. Furthermore, these micro-supercapacitors show a maximum energy density of 21 mWh/cm3, which is superior to the Li-based thin film batteries.
To enhance cycling stability, Ni-Cu-OH and Ni-Co-OH ternary electrodes have been prepared with different Ni:Cu and Ni:Co ratios by CBD at room temperature on carbon microfibers. It is observed that the electrodes with Ni:Cu and Ni:Co composition ratio of 100:10 results in an optimum capacitance and cycling stability. For the optimum composition, Ni-Co-OH with graphene and carbon nanofibers electrode was tested, with resultant improvement in electrode potential window, equivalent series resistance, and cyclic stability.
To further increase energy density, Ni(OH)2//Graphene asymmetric supercapacitor were fabricated with areal capacitance of 253 mF/cm2 at 5 mA/cm2 which is higher than NiO//rGO prepared by hydrothermal method. Ni-Co-OH/G-CNF//Graphene asymmetric supercapacitor results in a maximum power of 23 mW within an operating voltage of 2.2 V which are higher than of Ni(OH)2//Graphene (15.94 mW within 1.8 V). Our asymmetric supercapacitors have flexible-electrodes, low-cost fabrication process and environmentally friendly materials.
|
Page generated in 0.0572 seconds