Spelling suggestions: "subject:"graphes d'intervalle""
1 |
Représentations dynamiques de graphesCrespelle, Christophe 28 September 2007 (has links) (PDF)
Ce travail de thèse traite du maintien dynamique de représentations géométriques de graphes. Le manuscrit met en avant des connexions fortes entre trois types de représentation de graphes : les décompositions de graphes, les modèles géométriques et les représentations arborescentes à degrés de liberté (PQ-arbres, PC-arbres et autres structures du même type). De nouvelles relations entre ces objets sont mises en évidence et d'autres déjà connues sont approfondies. Notamment, il est établi une équivalence mathématique et algorithmique entre la décomposition modulaire des graphes d'intervalles et le PQ-arbre de leurs cliques maximales.<br /><br />Les connexions entre les trois types de représentation précités sont exploitées pour la conception d'algorithmes de reconnaissance entièrement dynamiques pour les cographes orientés, les graphes de permutation et les graphes d'intervalles. Pour les cographes orientés, l'algorithme présenté est de complexité optimale, il traite les modifications de sommet en temps O(d), où d est le degré du sommet en question, et les modifications d'arête en temps constant. Les algorithmes pour les graphes de permutation et les graphes d'intervalles ont la même complexité : les modifications d'arête et de sommet sont traitées en temps O(n), où n est le nombre de sommets du graphe. Une des contributions du mémoire est de mettre en lumière des similarités très fortes entre les opérations d'ajout d'un sommet dans un graphe de permutation et dans un graphe d'intervalles. <br />L'approche mise en oeuvre dans ce mémoire est assez générale pour laisser entrevoir les mêmes possibilités algorithmiques pour d'autres classes de graphes définies géométriquement.
|
2 |
Problèmes de placement 2D et application à l'ordonnancement : modélisation par la théorie des graphes et approches de programmation mathématiqueJoncour, Cédric 14 December 2011 (has links) (PDF)
Le problème de placement sur deux dimensions consiste à décider s'il existe un rangement d'objets rectangulaires dans une boîte donnée. C'est un problème combinatoire difficile (à la complexité du respect des capacités s'ajoute celle du positionnement des objets). Nous considérons les variantes sans rotation des objets et avec ou sans optimisation de la valeur des objets placés. Nous menons une étude exploratoire des méthodologies qui peuvent être développées à l'interface de la programmation mathématique, de l'optimisation combinatoire et de la théorie des graphes. Nous comparons les formulations de la littérature et en proposons de nouvelles. Nous développons et testons deux approches de résolution innovantes. L'une est basée sur la décomposition de Dantzig-Wolfe (avec un branchement sur les contraintes disjonctives de non recouvrement des objets). L'autre constitue en une approche combinatoire basée sur diverses caractérisations des graphes d'intervalles (modélisant le chevauchement des objets selon chaque axe).
|
3 |
Problèmes de placement, de coloration et d'identificationValicov, Petru 09 July 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à trois problèmes issus de l'informatique théorique, à savoir le placement de formes rectangulaires dans un conteneur (OPP), la coloration dite "forte" d'arêtes des graphes et les codes identifiants dans les graphes. L'OPP consiste à décider si un ensemble d'items rectangulaires peut être placé sans chevauchement dans un conteneur rectangulaire et sans dépassement des bords de celui-ci. Une contrainte supplémentaire est prise en compte, à savoir l'interdiction de rotation des items. Le problème est NP-difficile même dans le cas où le conteneur et les formes sont des carrés. Nous présentons un algorithme de résolution efficace basé sur une caractérisation du problème par des graphes d'intervalles, proposée par Fekete et Schepers. L'algorithme est exact et utilise les MPQ-arbres - structures de données qui encodent ces graphes de manière compacte tout en capturant leurs propriétés remarquables. Nous montrons les résultats expérimentaux de notre approche en les comparant aux performances d'autres algorithmes existants. L'étude de la coloration forte d'arêtes et des codes identifiants porte sur les aspects structurels et de calculabilité de ces deux problèmes. Dans le cas de la coloration forte d'arêtes nous nous intéressons plus particulièrement aux familles des graphes planaires et des graphes subcubiques. Nous montrons des bornes optimales pour l'indice chromatique fort des graphes subcubiques en fonction du degré moyen maximum et montrons que tout graphe planaire subcubique sans cycles induits de longueur 4 et 5 est coloriable avec neuf couleurs. Enfin nous confirmons la difficulté du problème de décision associé, en prouvant qu'il est NP-complet dans des sous-classes restreintes des graphes planaires subcubiques. La troisième partie de la thèse est consacrée aux codes identifiants. Nous proposons une caractérisation des graphes identifiables dont la cardinalité du code identifiant minimum est n − 1, où n est l'ordre du graphe. Nous étudions la classe des graphes adjoints et nous prouvons des bornes inférieures et supérieures serrées pour la cardinalité du code identifiant minimum dans cette classe. Finalement, nous montrons qu'il existe un algorithme linéaire de calcul de ce paramètre dans la classe des graphes adjoints L(G) où G a une largeur arborescente bornée par une constante. En revanche nous nous apercevons que le problème est NP-complet dans des sous-classes très restreintes des graphes parfaits.
|
4 |
Décomposition algorithmique des graphesMazoit, Frédéric 16 December 2004 (has links) (PDF)
Dans cette thèse, nous nous intéressons à deux types de décompositions des graphes introduits par Robertson et Seymour: les décompositions arborescentes et les décompositions en branches. À ces décompositions sont associés deux paramètres des graphes: la largeur arborescente et la largeur de branches. Nous montrons que ces deux décompositions peuvent être vues comme issues d'une même structure combinatoire; les deux paramètres mentionné ci-dessus sont égaux aux valeurs minimales de deux paramètres de cette structure commune. En poussant plus avant cette analogie, nous montrons comment adapter une technique de calcul de la largeur arborescente au calcul de la largeur de branches. Ceci nous permet de calculer la largeur de branches des graphes de nombre astéroïde borné ayant un nombre polynômial de séparateurs minimaux et celle des graphes d-trapézoïdes circulaires. Ce parallèle nous permet aussi d'adapter certains résultats structurels sur les décompositions en branches aux décompositions arborescentes. Dans le cas des graphes planaires, nous interprétons ces propriétés à l'aide d'outils topologiques. De cette façon, nous donnons une démonstration simple d'un théorème de dualité reliant la largeur arborescente d'un graphe planaire et celle de son dual. Ces outils nous permettent aussi d'énumérer de façon efficace les séparateurs minimaux des graphes planaires.
|
Page generated in 0.1108 seconds