• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations d'automates cellulaires

Martin, Bruno 08 April 2005 (has links) (PDF)
Ce mémoire est composé de deux grandes parties. Dans la première, nous simulons le fonctionnement d'automates cellulaires par différents modèles de calcul parallèle comme les PRAM, les XPRAM et les machines spatiales. Nous obtenons ainsi différentes preuves de l'universalité de ces modèles. Nous tirons quelques conséquences de ces résultats du point de vue de la calculabilité et de la complexité. Dans la seconde partie, nous considérons les automates cellulaires définis sur des graphes de Cayley finis. Nous rappelons la simulation de Róka qui permet de mimer le fonctionnement d'un tore hexagonal d'automates par un tore d'automates de dimension deux. Nous décrivons ensuite différentes manières de plonger un tore d'automates de dimension deux dans un anneau d'automates. Nous déduisons de ces résultats la simulation de tores de dimension finie par un anneau d'automates et celle d'un tore hexagonal d'automates par un anneau d'automates.
2

Revêtements finis d'une variété hyperbolique de dimension trois et fibres virtuelles.

Renard, Claire 02 November 2011 (has links) (PDF)
Dans le cadre des variétés hyperboliques, Thurston a conjecturé que toute variété hyperbolique de dimension trois connexe, orientable, complète et de volume fini possède un revêtement fini qui est fibré sur le cercle. En lien avec cette conjecture, le résultat principal de cette thèse donne des conditions suffisantes pour qu'un revêtement fini d'une variété hyperbolique M de dimension trois fibre sur le cercle, ou du moins contienne une fibre virtuelle. Soit F une surface close, orientable, plongée et proche d'une surface minimale, dans un revêtement fini M' de M et séparant M' en corps en anses. La condition pour qu'il existe une fibre virtuelle dans le complémentaire de F est donnée par une inégalité faisant intervenir le degré d du revêtement, le genre g de la surface, le nombre q de corps en anses et une constante k ne dépendant que du volume et du rayon d'injectivité de M. En appliquant ce théorème à un scindement de Heegaard de genre minimal du revêtement M', on obtient une version sous-logarithmique des conjectures de Lackenby sur le gradient de Heegaard et le gradient de Heegaard fort. Le théorème principal s'applique également dans le cadre d'une décomposition circulaire associée à une classe d'homologie non triviale. Nous obtenons par exemple des conditions suffisantes pour qu'une classe d'homologie non triviale de M corresponde à une fibration sur le cercle. Des méthodes analogues permettent aussi de donner une condition suffisante pour qu'une surface incompressible plongée dans M soit une fibre virtuelle. Enfin, nous donnons un critère pour que dans une tour de revêtements finis le premier nombre de Betti tende vers l'infini.
3

Problèmes de routages dans les réseaux optiques

Houndété, Alfred January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Communications structurées dans les réseaux

Marlin, Nausica 16 June 2000 (has links) (PDF)
Cette thèse est divisée en deux parties. La première partie concerne la commutation rapide des informations dans les réseaux ATM. Dans le chapitre 2, nous décrivons la technologie ATM. Dans le chapitre 3, nous modélisons le problème du positionnement des chemins virtuels et définissons les deux paramètres étudiés, charge et nombre de sauts d'un VPL. Nous discutons l'orientation du modèle, la complexité du problème, puis proposons une synthèse des résultats de la littérature. Les démonstrations des résultats originaux se trouvent dans les chapitres 4 et 5. La seconde partie concerne l'échange total dans les réseaux d'interconnexion entre processeurs. Dans le chapitre 6, nous introduisons les notions de théorie des groupes nécessaires ainsi que la motivation du problème. L'objet du chapitre 7 est de caractériser les graphes de Cayley admettant un certain automorphisme de graphe (appelé rotation complète) permettant de construire d'une manière simple un protocole d'échange total optimal. Nous mettons en évidence des conditions nécessaires sur le groupe pour que le graphe admette une rotation complète. Nous donnons la liste exhaustive des graphes de Cayley admettant une rotation complète parmi les graphes de Cayley engendrés par des transpositions.
5

Cycles in graphs and arc colorings in digraphs / Cycles des graphes et colorations d’arcs des digraphes

He, Weihua 28 November 2014 (has links)
Dans cette thèse nous étudions quatre problèmes de théorie des graphes. En particulier,Nous étudions le problème du cycle hamiltonien dans les line graphes, et aussi nous prouvons l’existence de cycles hamiltoniens dans certains sous graphes couvrants d’un line graphe. Notre résultat principal est: Si L(G) est hamiltonien, alors SL(G) est hamiltonien. Grâce à ce résultat nous proposons une conjecture équivalente à des conjectures célèbres. Et nous obtenons deux résultats sur les cycles hamiltoniens disjoints dans les line graphes.Nous considérons alors la bipancyclicité résistante aux pannes des graphes de Cayley engendrés par transposition d’arbres. Nous prouvons que de tels graphes de Cayley excepté le “star graph” ont une bipancyclicité (n − 3)-arête résistante aux pannes.Ensuite nous introduisons la coloration des arcs d’un digraphe sommet distinguant. Nous étudions la relation entre cette notion et la coloration d’arêtes sommet distinguant dans les graphes non orientés. Nous obtenons quelques résultats sur le nombre arc chromatique des graphes orientés (semi-)sommet-distinguant et proposons une conjecture sur ce paramètre. Pour vérifier cette conjecture nous étudions la coloration des arcs d’un digraphe sommet distinguant des graphes orientés réguliers.Finalement nous introduisons la coloration acyclique des arcs d’un graphe orienté. Nous calculons le nombre chromatique acyclique des arcs de quelques familles de graphes orientés et proposons une conjecture sur ce paramètre. Nous considérons les graphes orientés de grande maille et utilisons le Lemme Local de Lovász; d’autre part nous considérons les graphes orientés réguliers aléatoires. Nous prouvons que ces deux classes de graphes vérifient la conjecture. / In this thesis, we study four problems in graph theory, the Hamiltonian cycle problem in line graphs, the edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition trees, the vertex-distinguishing arc colorings in digraph- s and the acyclic arc coloring in digraphs. The first two problems are the classic problem on the cycles in graphs. And the other two arc coloring problems are related to the modern graph theory, in which we use some probabilistic methods. In particular,We first study the Hamiltonian cycle problem in line graphs and find the Hamiltonian cycles in some spanning subgraphs of line graphs SL(G). We prove that: if L(G) is Hamiltonian, then SL(G) is Hamiltonian. Due to this, we propose a conjecture, which is equivalent to some well-known conjectures. And we get two results about the edge-disjoint Hamiltonian cycles in line graphs.Then, we consider the edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition trees. And we prove that the Cayley graph generated by transposition tree is (n − 3)-edge-fault-tolerant bipancyclic if it is not a star graph.Later, we introduce the vertex-distinguishing arc coloring in digraphs. We study the relationship between the vertex-distinguishing edge coloring in undirected graphs and the vertex-distinguishing arc coloring in digraphs. And we get some results on the (semi-) vertex-distinguishing arc chromatic number for digraphs and also propose a conjecture about it. To verify the conjecture we study the vertex-distinguishing arc coloring for regular digraphs.Finally, we introduce the acyclic arc coloring in digraphs. We calculate the acyclic arc chromatic number for some digraph families and propose a conjecture on the acyclic arc chromatic number. Then we consider the digraphs with high girth by using the Lovász Local Lemma and we also consider the random regular digraphs. And the results of the digraphs with high girth and the random regular digraphs verify the conjecture.
6

Le jeu de policiers-voleur sur différentes classes de graphes

Turcotte, Jérémie 12 1900 (has links)
Réalisé avec le support financier du Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG) et du Fonds de Recherche du Québec – Nature et technologies (FRQNT). / Ce mémoire étudie le jeu de policiers-voleur et contient trois articles, chacun portant sur une classe de graphes spécifique. Dans le premier chapitre, la notation et les définitions de base de la théorie de graphe qui nous serons utiles sont introduites. Bien que chaque article comporte une introduction citant les concepts et résultats pertinents, le premier chapitre de ce mémoire contient aussi une introduction générale au jeu de policiers-voleur et présente certains des résultats majeurs sur ce jeu. Le deuxième chapitre contient l’article écrit avec Seyyed Aliasghar Hosseini et Peter Bradshaw portant sur le jeu de policiers-voleurs sur les graphes de Cayley abéliens. Nous améliorons la borne supérieure sur le cop number de ces graphes en raffinant les méthodes utilisées précédemment par Hamidoune, Frankl et Bradshaw. Le troisième chapitre présente l’article concernant le cop number des graphes 2K2-libres. Plus précisément, il est prouvé que 2 policiers peuvent toujours capturer le voleur sur ces graphes, prouvant ainsi la conjecture de Sivaraman et Testa. Finalement, le quatrième chapitre est l’article écrit avec Samuel Yvon et porte sur les graphes qui ont cop number 4. Nous montrons que tous ces graphes ont au moins 19 sommets. En d’autres mots, 3 policiers peuvent toujours capturer le voleur sur tout graphe avec au plus 18 sommets, ce qui répond par la négative à une question de Andreae formulée en 1986. Un pan important de la preuve est faite par ordinateur; ce mémoire contient donc une annexe comprenant le code utilisé. / This thesis studies the game of cops and robbers and consists of three articles, each considering a specific class of graphs. In the first chapter, notation and basic definitions of graph theory are introduced. Al- though each article has an introduction citing the relevant concepts and results, the first chapter of this thesis also contains a general introduction to the game of cops and robbers and presents some of its major results. The second chapter contains the paper written with Seyyed Aliasghar Hosseini and Peter Bradshaw on the game of cops and robbers on abelian Cayley graphs. We improve the upper bound on the cop number of these graphs by refining the methods used previously by Hamidoune, Frankl and Bradshaw. The third chapter presents the paper concerning the cop number of 2K2-free graphs. More precisely, it is proved that 2 cops can always catch the robber on these graphs, proving a conjecture of Sivaraman and Testa. Finally, the fourth chapter is the paper written with Samuel Yvon which deals with graphs of cop number 4. We show that such graphs have at least 19 vertices. In other words, 3 cops can always catch the robber on any graph with at most 18 vertices, which answers in the negative a question by Andreae from 1986. An important part of the proof is by computer; this thesis thus has an appendix containing the code used.

Page generated in 0.0641 seconds