• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 299
  • 108
  • 102
  • 43
  • 40
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 763
  • 106
  • 102
  • 80
  • 76
  • 68
  • 62
  • 61
  • 51
  • 49
  • 49
  • 48
  • 47
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Structure and Interaction Energies of Kr Atoms Adsorbed on Graphitic Amorphous Carbon

Lee, Sang -Joon 01 August 1995 (has links)
The physisorption of Kr on graphitic amorphous carbon (g-C) has been investigated using a statistical approach. The interaction energy calculation process (i) established a structural model of g-C and (ii) determined the adsorbate-adsorbate and the adsorbate-substrate interaction potentials on g-C. The structural model of g-C was divided into three regions. For the interaction potential between a Kr atom and a carbon atom the short and medium range order of g-C was described with a discrete medium model based on three ring clusters using ring statistics from Beeman's continuous random network C1120 model of g-C. For the intermediate distance region, Beeman's radial distribution function was used to model g-C. A homogenous and isotropic continuous medium model was used at large distances. The Kr-Kr and Kr-g-C interaction potentials used for Kr on g-C, which are pair-wise Lennard-Jones 6-12 potentials, are similar to Kr on graphite potentials. the validity of the model for g-C and the potentials were verified though calculations for Kr on graphite. Results compared favorably with recent literature values. The interaction energy calculation results for Kr on a g-C substrate assert that (i) Kr adlayers will form on g-C, (ii) the structure of the Kr adlayer is governed by the substrate corrugation at low coverage and by the Kr-Kr interaction at high coverage, and (iii) there is no direct relation between the structure of Kr adlayers on g-C and those on graphite. The average binding energy of Kr on g-C is comparable with that on graphite, but the corrugation of g-C is perhaps six times that of a graphite substrate. The wrinkling of the g-C surface, due to the presence of a distribution of 5-, 6-, and 7- membered rings, is responsible for this large corrugation of the g-C substrate.
252

IMPACT OF CAST IRON MICROSTRUCTURE AND SURFACE TREATMENT ON PROPERTIES AND FRICTION PERFORMANCE OF BRAKE ROTORS

Jogineedi, Rohit 01 December 2021 (has links) (PDF)
Friction interaction between brake materials see a rise in temperatures of over 1000 oC contributing to thermal fade of brakes and deterioration/cracking of rotors. Various microstructural features like graphite, ferrite and pearlite could influence the mechanical and thermal properties and related friction performance of the brake materials. Even more relevant impact on properties and friction performance of rotors can be expected after coatings or surface treatments. The primary purpose of this research is to identify the impact of microstructure and surface treatment on properties and friction performance of four types of pearlitic gray cast irons. The C30, C20 and FC150 rotors were surface treated by bombarding with heavy ions which diffused into cast iron and created a coating with different chemistry and properties when compared to the “non-treated” rotors. Complete chemical and material characterization of the brake rotors using optical emission spectrometer (OES), carbon-sulfur combustion analyzer, polarized light microscopy, density (analytical balance and Archimedes principle), Brinell hardness tester, laser flash apparatus, scanning electron microscopy, and energy dispersive X-ray microanalysis. The pearlitic gray cast iron rotors are typified by the presence of graphite, carbides, and inclusions in an almost fully pearlitic matrix with a minimum amount (2-4 vol.%) of “free” ferrite. Graphite can be further classified based on its morphology. The investigated cast irons contained two different graphite types: type VII-E5 for the F150 OEM rotor, and type VII-C5 characteristic for the ASTM A48 classes C30 and C20, as well as the “Japanese” JIS G5501 FC150 rotors. It was identified from the initial curve fitting models that the observed microstructural differences in individual cast iron types are responsible for the observed mechanical (density – decreases with increasing ferrite and decreasing pearlite contents; hardness – decreases with increasing ferrite contents) and thermal properties (increase with increasing ferrite and pearlite contents), and friction performance (increases with increasing ferrite and decreasing graphite contents) of the studied rotors. The applied surface treatment also contributed to the modification of the mechanical and thermal properties, as well as friction performance of the studied rotors. However, there were not enough statistically relevant models developed from the generated data, which could identify the combined influence of various microstructural features observed and applied surface treatment over the properties and friction performance of the studied rotors.
253

Terahertz Time-Domain Spectroscopy of Low-Dimensional Materials and Photonic Structures

Xia, Chen 12 March 2013 (has links)
No description available.
254

Biological Health Assessment of an Industrial Wastewater Treatment Facility

Zivich, Jamie Dionne 08 August 2011 (has links)
The biological treatment of wastewaters from an industry was studied. Among the more important wastewater constituents of concern were high levels of suspended solids, due to graphite and nitrocellulose, the solvents, ethanol and acetone, and nitroglycerine (NG). The goal of this project was divided into four objectives. The impacts of graphite on a microbial population were evaluated. Sequencing batch reactors (SBRs) were used to monitor the effects of graphite on mixed liquor suspended solids (MLSS), removal of soluble chemical oxygen demand (sCOD), and specific oxygen uptake rates (sOUR). Graphite appeared to have no adverse effect on the microbes. The potential benefits of adding sucrose, nitrogen, and phosphorus to SBRs were evaluated. The MLSS was maintained at 1,250 mg/L, similar to the microbial population in the suspended growth system at the industry. Sucrose addition increased the sCOD removals and sOUR. No direct effect was observed with the addition of nitrogen and phosphorus. The treatability of acetone and ethanol was studied through sOUR and batch testing to determine bacterial response to solvents. Both solvents were utilized by the microbes. The concentrations tested proved to be beneficial, not inhibitory. Ethanol and a 50/50 mixture of acetone and ethanol were more viable substrates than acetone. NG treatability was examined under anoxic and aerobic conditions in SBRs and batch biological reactors. NG degradation occurred under anoxic conditions, but was more favorable in aerobic environments. NG was degraded in all SBR tests to below detection limit (0.5 mg/L); therefore, the optimal treatment could not be determined. / Master of Science
255

Novel strategies to develop efficient titanium dioxide and graphitic carbon nitride-based photocatalysts

Nguyen, Chinh Chien 17 July 2018 (has links)
Afin de résoudre les problèmes environnementaux et énergétiques modernes, ces dernières années ont vu le développement de catalyseurs photocataytiques capables d’utiliser la lumière solaire. En effet, les possibles applications des semiconducteurs présentant des propriétés photocatalytiques dans les domaines de la production d’hydrogène ou la dégradation de polluants organiques ont généré un grand intérêt de la part de la communauté scientifique. Actuellement, les photocatalyseurs à base de dioxyde de titane (TiO₂) et de nitrure de carbone graphitique (g-C₃N₄) sont considérés comme les matériaux les plus étudiés pour leurs faibles coûts et leurs propriétés physico-chimiques exceptionnelles. Cependant, la performance photocatalytique de ces matériaux reste encore limitée, à cause de la recombinaison rapide des porteurs de charge et et d'une absorption limitée de la lumière. En générale, malgré des caractéristiques exceptionnelles, ces matériaux ne contribuent pas significativement à la séparation de charge et l’absorption de la lumière lorsqu’ils sont produits par des méthodes conventionnelles. L'objectif de cette thèse est de développer de nouvelles voies pour la production de matériaux efficaces basés sur TiO₂ et g-C₃N₄). Nous avons d'abord préparé de la triazine (CxNy) qui fonctionne comme un co-catalyseur d'oxydation ce qui facilite la séparation des paires «électron-trou» dans le système du photocatalyseur creux de type Pt-TiO₂-CxNy. La présence simultanée de Pt et de CxNy, qui servent comme co-catalyseurs de réduction et d'oxydation, respectivement, a permis une amélioration remarquable des performances photocatalytiques du TiO₂. De plus, nous avons développé une nouvelle approche, en utilisant un procédé de combustion de sphère de carbone assisté par l’air, pour préparer du C/Pt/TiO₂ . Ce matériau possède de nombreuses propriétés uniques qui contribuent de manière significative à augmenter la séparation « électron-trou », et en conséquence, à améliorer la performance photocatalytique. Dans le but de développer un matériau qui soit capable de fonctionner sous les rayons du soleil et dans l'obscurité, nous avons développé un photocatalyseur creux à double enveloppes : le Pt-WO₃/TiO₂-Au. Ce matériau a montré non seulement une forte absorption de la lumière solaire, mais aussi une séparation des charges élevée et une haute capacité de stockage d'électrons. Par conséquent, ce type de photocatalyseurs a montré une dégradation efficace des polluants organiques, à la fois sous la lumière visible (λ ≥ 420 nm) et dans l'obscurité. En ce qui concerne le g-C₃N₄, nous avons exploité la relation entre les lacunes d’azote et les propriétés plasmoniques des nanoparticules d’or (Au). Ce type de photocatalyseur du Au/g-C₃N₄ a été préparé en présence d’alcali suivi par une post calcination. En effet, les lacunes d’azote ainsi produites permettent le renforcement des interactions entre l’or et le g-C₃N₄ et des propriétés plasmoniques de l’or. Ces caractéristiques exceptionnelles renforcent l'utilisation efficace de l’énergie solaire ainsi que la séparation des paires « électron-trou », ce qui contribuent à la performance photocatalytique pour la production d'hydrogène du photocatalyseur. Afin d’améliorer la capacité d’absorption de la lumière visible de g-C₃N₄, une nouvelle voie de synthèse dénommée « poly-alcaline » a été développée. La possibilité d’ajouter du polyéthylèneimine (PEI) et de l’hydroxyde de potassium (KOH) pour générer de nombreux centres lacunaires en azote ainsi que des groupes hydroxyles dans la structure du matériau, a été explorée afin d’optimiser l’efficacité du matériau. De telles modifications ont démontré leurs capacités à réduire la bande interdite et à provoquer plus facilement la séparation de charges améliorant ainsi les propriétés photocatalytiques du photocatalyseur vis-à-vis de la production d’hydrogène. Cette méthode ouvre donc une nouvelle voie d’avenir pour préparer des photocatalyseurs nanocomposites efficaces possédant à la fois, une forte d’absorption de la lumière et une bonne séparation de charges. / The utilization of solar light-driven photocatalysts has emerged as a potential approach to deal with the serious current energy and environmental issues. Over the past decades, semiconductor-based photocatalysis has attracted an increasing attention for diverse applications including hydrogen production and the decomposition of organic pollutants. Currently, titanium dioxide (TiO₂) and graphitic carbon nitride (g-C₃N₄)-based photocatalysts have been considered as the most investigated materials because of their low cost, outstanding physical and chemical properties. However, their photocatalytic performances are still moderate owing to the fast charge carrier recombination and limited light absorption. The main target of the research presented in this thesis is to develop novel routes to prepare efficient materials based on TiO₂ and g-C₃N₄. These materials possess prominent features, which contribute to address the fast charge separation and light absorption problems. We firstly have prepared triazine (CxNy) acting as an oxidation co-catalyst, which efficiently facilitates electron-hole separation in a Pt-TiO₂-CxNy hollow photocatalyst system. The co-existence of Pt and CxNy functioning as the reduction and oxidation co-catalysts, respectively, has remarkably enhanced the photocatalytic performance of TiO₂. Next, we have also developed a new approach employing the air- assisted carbon sphere combustion process in preparing C/Pt/TiO₂. This material possesses many salient properties that significantly boost the electron-hole separation leading to enhanced photocatalytic performance. In an attempt to design a material that can operate under sunlight and in darkness, we have introduced Pt-WO₃/TiO₂-Au double shell hollow photocatalyst. The material has shown not only strong solar light absorption but also efficient charge separation and electron storage capacity. As a result, this type of photocatalyst exhibits a high activity performance for the degradation of organic pollutants both under visible light (λ ≥ 420 nm) and in the dark. Regarding to g-C₃N₄, we have explored the relationship between nitrogen vacancies and the plasmonic properties of Au nanoparticles employing alkali associated with the post-calcination method to prepare Au/g-C₃N₄. In fact, the produced nitrogen vacancies in the structure of g-C₃N₄ essentially enhance the interaction at Au/g-C₃N₄ interface and the plasmonic properties of Au nanoparticles. These outstanding features contribute to enhance the utilization of solar light and electron-hole separation that prompt the photocatalytic performance towards hydrogen production. Finally, we have employed a novel poly-alkali route to prepare a strong visible light absorption photocatalyst-based g-C₃N₄. The co-existence of PEI and KOH, which induces numerous nitrogen vacancies and incorporated hydroxyl groups in the structure of the resulted material, has been explored for the first time. These modifications have been proved to narrow the bandgap and facilitate the charge separation leading to enhance the solar light-driven hydrogen production. This method also opens up a new approach to prepare efficient nanocomposite photocatalysts possessing both strong light absorption and good charge separation.
256

Platinum on graphite (0001): A model system for the study of physical and chemical properties of small metal islands

Eppell, Steven Joseph January 1991 (has links)
No description available.
257

Interfacial effects on the thermal and mechanical properties of graphite/copper composites

DeVincent, Sandra Marie January 1994 (has links)
No description available.
258

Controlled Assembly of Graphene Sheets and Carbon Nanospheres for Optimum Electrical Conductivity in Nanostructured Coatings

Alazemi, Mubarak FMF 09 July 2010 (has links)
No description available.
259

Processing Nano Graphene Plates (NGPs) and NGP Nanocomposite

Li, Yena 17 April 2007 (has links)
No description available.
260

Carbon Nanomaterials Deposition in an Alumina Microcombustor

Kellie, Benjamin M. 25 June 2012 (has links)
No description available.

Page generated in 0.0607 seconds