• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 299
  • 108
  • 102
  • 43
  • 40
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 763
  • 106
  • 102
  • 80
  • 76
  • 68
  • 62
  • 61
  • 51
  • 49
  • 49
  • 48
  • 47
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Production And Assesment Of Compacted Graphite Iron Diesel Engine Blocks

Alkan, Anil 01 October 2011 (has links) (PDF)
In Diesel engine blocks properties such as tensile strength, heat conductivity, sound damping, engine vibration and noise are strongly influenced by graphite shape and volume percent in the matrix microstructure. In this study, the engine blocks were produced at ELBA Basin&ccedil / li D&ouml / k&uuml / m Od&ouml / ksan Cast iron foundry in Osmaneli Turkey by performing casting into furan resin sand and preparing cast iron liquid alloy in induction furnace that were treated with Mg by using ladle method. The main purpose of this study is to achive 0 &ndash / 25% volume nodularity and remaining is compacted graphite in the produced engine blocks. The shape and volume percent of graphite particles were characterized by an image analyze system. In the first part of this work, after the diesel engine blocks were produced at ELBA Basin&ccedil / li D&ouml / k&uuml / m Od&ouml / ksan Cast iron foundry in Osmaneli Turkey, the blocks were cut and samples were obtained from 14 different thicknesses of diesel engine blocks. Afterwards, the samples were examined under optical microscope, Soif XJP-6A. The nodularity and compacted graphite values were obtained numerically with the help of Materials Plus image analyzer systems, which is attached to the optical microscope. v In the second part of the study, the diesel engine blocks which are produced at Od&ouml / ksan were examined by ultrasonic test that was done by using USM 35 flaw detector test machine. Solidification &ndash / time and temperature &ndash / time simulations were also done by using NovaCast NovaFlow simulation code. Finally mathematical formulas for 13 different thickness of diesel engine blocks were obtained by using excel linest code. The compacted graphite volume percent observed at different sections of the diesel engine blocks were found to be a function of cooling rate and chemical composition. Best results were obtained when chemical Mg/S ratio was approximately 1 and C.E.V. was between 4.40 &ndash / 4.50.
362

Development of solution-processed methods for graphene synthesis and device fabrication

Chu, Hua-Wei 19 May 2011 (has links)
Various solution-processed methods have been employed in this work. For the synthesis of graphene, a chemical exfoliation method has been used to generate large graphene flakes in the solution phase. In addition, chemical or electro polymerization has been used for synthesizing polyanthracene, which tends to form graphene nanoribbon through cyclodehydrogenation. For the device fabrication, graphene oxide (GO) thin films were deposited from solution phase on the vapor-silanzed aminosilane surface to make semiconducting active layer or conducting electrodes. Gold nanoparticles (AuNPs) were selectively self-assembled from solution phase to pattern nanowires.
363

Cyclodextrines hydrophiles : caractérisation et étude de leurs propriétés énantiosélective et complexante. Utilisation de la chromatographie en phase liquide et de la spectrométrie de masse.

Jacquet, Romain 22 November 2006 (has links) (PDF)
De par leurs propriétés complexante et énantiosélective, les cyclodextrines (CDs) sont largement utilisées dans les industries pharmaceutique, cosmétique, agroalimentaire, etc. ainsi qu'en chimie analytique. Les travaux présentés dans ce manuscrit concernent différents domaines d'étude des CDs : leur caractérisation, leur utilisation en tant que sélecteurs chiraux et l'analyse de leurs complexes.<br />Dans la première partie, une nouvelle CD méthylée faiblement substituée a été caractérisée par différentes techniques analytiques, permettant ainsi l'obtention d'informations complémentaires menant à une meilleure connaissance de la composition du mélange commercial. D'autre part, la séparation par chromatographie en phase liquide (CPL) des trois isomères de la sulfobutyléther-beta-CD monosubstituée a été optimisée sur carbone graphite poreux (PGC) en augmentant la température de la colonne.<br />La deuxième partie a porté sur l'évaluation du système chromatographique PGC / CDs méthylées pour la séparation chirale en CPL. Outre sa grande résistance physique et chimique, le PGC s'est révélé plus sélectif que les colonnes de silice greffée habituellement employées pour ce type de séparation et a nécessité une quantité moindre de CDs dans la phase mobile.<br />Enfin, dans la troisième partie, les complexes de différentes CDs méthylées avec des solutés test ont été étudiés par des expériences de partage liquide-liquide et par spectrométrie de masse à ionisation électrospray. La comparaison des résultats obtenus par ces deux méthodes a révélé que les signaux enregistrés en ESI-SM ne reflètent pas les équilibres existant en solution.
364

Mild Preparation of Anode Materials for Lithim Ion Batteries: from Gas-Phase Oxidation to Salt-free Green Method

Holze, Rudolf, Wu, Yuping 27 November 2009 (has links) (PDF)
Natural graphite from cheap and abundant natural sources is an attractive anode material for lithium ion batteries. We report on modifications of such a common natural graphite, whose electrochemical performance is very poor, with solutions of (NH4)2S2O8, concentrated nitric acid, and green chemical solutions such of e.g. hydrogen peroxide and ceric sulfate. These treatments resulted in markedly im-proved electrochemical performance (reversible capacity, coulombic efficiency in the first cycle and cycling behavior). This is attributed to the effective removal of active defects, formation of a new dense surface film consisting of oxides, improvement of the graphite stability, and introduction of more nanochannels/micropores. These changes inhibit the decomposition of electrolyte solution, pre-vent the movement of graphene planes along a-axis direction, and provide more passage and storage sites for lithium. The methods are mild, and the uniformity of the product can be well controlled. Pilot experiments show promising results for their application in industry.
365

Contribution à l'étude de l'intercalation de chlorures de lanthanoïdes dans le graphite par voie hétérocomplexe

Cahen, Sébastien Vangelisti, René. January 2005 (has links) (PDF)
Thèse doctorat : Physique et Chimie de la Matière et des Matériaux : Nancy 1 : 2005. / Titre provenant de l'écran-titre.
366

Fatigue des matériaux métalliques quelques contributions à une approche dissipative /

Charkaluk, Éric Saxcé, Géry de January 2007 (has links)
Reproduction de : Habilitation à diriger des recherches : Sciences mathématiques : Lille 1 : 2006. / N° d'ordre (Lille 1) : 548. Titre provenant de la page de titre du document numérisé. Bibliogr. à la suite des chapitres.
367

Model and Validation of Static and Dynamic Behavior of Passive Diamagnetic Levitation for Energy Harvesting

Siyambalapitiya, Chamila Shyamalee 01 January 2012 (has links)
This dissertation reports the investigation conducted on the static and dynamic behavior of the passive diamagnetic levitation systems. Attachment of a device to a substrate hinders the optimum performance ability of vibrating devices by altering the dynamic behavior of the moving part whilst introducing higher overall stiffness. The significance of this effect is prominent especially in vibration based energy harvesters as higher stiffness elevates the resonance frequency of the system, making it difficult to tune into ambient low frequencies. Other advantages of the proposed method are given by the removal of mechanical bending elements, which are often the source of energy dissipation through thermo-elastic damping and affects device reliability and durability. In this research, diamagnetically levitated resonators that can be utilized in energy harvesting were proposed and investigated as a possible solution to overcome these problems. Permanent magnets in an opposite neighboring poles (ONP) configuration were used to provide the magnetic field required for levitation. Pyrolytic graphite (PG), which is the known highest diamagnetic material, serves as the levitating proof mass. Experimental results show that the static levitation height has a linear dependence on the thickness and a nonlinear dependence on the area of the levitating proof mass that can be approximated to a third order polynomial equation. Also, the study proved that a thinner proof mass provides a higher air gap while length of the proof mass beyond a certain value (l >10 mm for the experimental system considered in this dissertation) has no significant effect on increasing the air gap. It was also observed that levitation can slightly increase by attaching magnets to a sheet of steel (ferromagnetic material). To the best of my knowledge, this dissertation is the first to address the parameterized studies in the dynamics of diamagnetic levitated objects by permanent magnets. Measurements performed on a diamagnetic levitating prototype system show that the resonance frequencies are lowered by approximately 3- 4 orders of magnitude in levitated systems compared to the attached systems demonstrating the feasibility of using levitating techniques for micro to meso scale energy harvester applications. Also, there is a significant dissimilarity observed in this study compared to the mechanically attached systems: The resonance frequency has a dependence on magnetic field strength, and is shifting towards lower values when increasing the strength of the magnetic field. This indicates that the virtual spring of a levitated proof mass is not a constant and therefore, the resonance frequency of the diamagnetic levitated systems is able to be fine-tuned by varying the magnetic field. Finite Element Method (FEM) models were developed using COMSOL software that can simulate 3D magnetic flux formation of an array of permanent magnets and the diamagnetic levitation. The appropriate magnetic force equation from the two force equations that exist in the literature was established for the static levitation with the help of experimental and simulation results. Moreover, these models are able to provide the magnetic force exerted on diamagnetic objects at different heights, stable levitation height and position and also an indication of the maximum stably levitated size of the diamagnetic material. Future endeavor of this study is to realize the diamagnetic levitation in energy harvesters. The results obtained from this research will not be limited to harvester applications but will also be beneficial to other diamagnetic levitation related systems, as these parameters are fundamental and necessary for the foundation of the research in the field of interest.
368

Compression/injection molding of bipolar plates for proton exchange membrane fuel cells

Devaraj, Vikram 30 July 2012 (has links)
Fuel cells are electrochemical energy conversion devices that convert chemical energy to electrical energy efficiently. Bipolar plates form an integral part of a fuel cell and their high manufacturing cost and low production rate have hindered the commercialization of fuel cells. Bipolar plates require high electrical conductivity, strength, chemical resistance and thermal conductivity. This thesis presents efforts to manufacture bipolar plates which meet these requirements using compression or injection molding. Compression or injection molding processes allow cost-effective, large-scale manufacturing of bipolar plates. A variety of material systems for the fabrication of bipolar plates are processed, molded and characterized. / text
369

Nanoscale graphene for RF circuits and systems

Parrish, Kristen Nguyen 19 September 2013 (has links)
Increased challenges in CMOS scaling have motivated the development of alternatives to silicon circuit technologies, including graphene transistor development. In this work, we present a circuit simulator model for graphene FETs, developed to both fit measured data and predict new behaviors, motivating future research. The model is implemented in Agilent ADS, a circuit level simulator that is commonly used for non-standard transistor technologies, for use with parameter variation analyses, as well as easy integration with CMOS design kits. We present conclusions drawn from the model, including analyses on the effects of contact resistance and oxide scaling. We have also derived a quantum-capacitance limited model, used to intuit intrinsic behaviors of graphene transistors, as well as outline upper bounds on performance. Additionally, the ideal frequency doubler has been examined and compared with graphene, and performance limits for graphene frequency multipliers are elucidated. Performance as a demodulator is also discussed. We leverage this advancement in modeling research to advance circuit- and system-level research using graphene transistor technology. We first explore the development of a GHz planar carbon antenna for use on an RF frontend. This research is further developed in work towards the first standalone carbon radio on flexible plastics. A front end receiver, comprised of an integrated carbon antenna, transmission lines, and a graphene transistor for demodulation, are all fabricated onto one plastic substrate, to be interfaced with speakers for a full radio demo. This complete system will motivate further research on graphene-on-plastic systems. / text
370

Deposition and spectroscopy of supported metal clusters

Grimaud, Christele-Marine January 2000 (has links)
This dissertation describes experimental investigations of deposited atomic clusters and of films of metal particles produced by cluster deposition on graphite. It consists of three chapters presenting a review of the addressed subjects, the experimental techniques, and a summary of the results. The main body of results is described in full in afourth chapter as research papers. A systematic study of the impact of metal cluster trimers on highly oriented pyrolitic graphite (HOPG) is investigated. The creation of defects at the surface of graphite is found to be independento f the masso f the atoms in the two typeso f clusters considered The electron energy loss spectroscopy (EELS) of collective electronic excitations (plasmons) in a film of silver particles is presented A weak positive dispersion of the plasmon mode is measured and exhibits a higher ftequency of the mode with parallel momentum close to zero than in Ag surfaces. The adsorption of cinnamaldehydeis examined on nanostructured palladium surfaces. The EELS spectrum of cinnamaldehyde adsorbed on palladium is presented, as well as that of condensed layers of cinnamaldehyde on HOPG. Findings of this thesis involve different physical and chemical properties of the cluster surface system with a view in using cluster deposition for practical applications such as the investigation of model catalysts.

Page generated in 0.0524 seconds