• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 280
  • 96
  • 62
  • 43
  • 39
  • 34
  • 26
  • 12
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 695
  • 219
  • 105
  • 93
  • 83
  • 80
  • 70
  • 65
  • 64
  • 63
  • 61
  • 57
  • 57
  • 54
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Past and present management influences the seed bank and seed rain in a rural landscape mosaic

Auffret, Alistair G., Cousins, Sara A. O. January 2011 (has links)
1. Seed bank and seed rain represent dispersal in time and space. They can be important sources of diversity in the rural landscape, where fragmented habitats are linked by their histories. 2. Seed bank, seed rain and above-ground vegetation were sampled in four habitat types (abandoned semi-natural grassland (ABA), grazed former arable field (FAF), mid-field islet (MFI) and grazed semi-natural grassland (SNG)) in a rural landscape in southern Sweden, to examine whether community patterns can be distinguished at large spatial scales and whether seed bank and seed rain are best explained by current, past or intended future vegetation communities. 3. We counted 54 357 seedlings of 188 species from 1190 seed bank and 797 seed rain samples. Seed bank, seed rain and above-ground vegetation communities differed according to habitat. Several species characteristic of managed grassland vegetation were present in the seed bank, seed rain and vegetation of the other habitats. 4. The seed banks of SNGs and the seed rain of the FAFs were generally better predicted by the surrounding above-ground vegetation than were the other habitat types. The seed rain of the grazed communities was most similar to the vegetation in the FAFs, while the seed banks of the abandoned grasslands most resembled the vegetation in SNGs. 5. Gap availability and seed input could be limiting the colonisation of target species in FAFs, while remnant populations in the seed bank and the presence of grassland specialists in the above-ground vegetation indicate that abandoned grasslands and mid-field islets could be valuable sources of future diversity in the landscape after restoration. 6. Synthesis and applications. SNG communities are able to form seed banks which survive land-use change, but their seed rain does not reflect their above-ground communities. It is important that grassland plants set seed. By connecting existing grasslands with restoration targets, increased disturbance in the target habitats would allow for colonisation via the seed bank or seed rain, while decreased grazing intensity would benefit seed production in the source grasslands. Otherwise, landscape-wide propagule availability might increase with a more varied timing and intensity of management.
422

The influence of land-use intensification and biodiversity on grassland biomass, water use and plant functional traits / Der Einfluss von Landnutzungsintensivierung und Biodiversität auf die Biomasse, den Wasserhaushalt und funktionelle Pflanzeneigenschaften von Grünland

Rose, Laura 04 May 2011 (has links)
No description available.
423

Effects of fire on a prairie arthropod community

White, Katrina Marie, University of Lethbridge. Faculty of Arts and Science January 2000 (has links)
In this study, I addressed how a large-scale wildfire affected a prairie arthropod community in southern Alberta, Canada. First, I looked at the general effects of disturbance on the arthropod community. Second, I addressed how processes such as competition and secondary succession may have affected diversity in this arthropod community. Third, I determined how the arthropod community trophic structure was regulated. Results showed that the effect of disturbance on arthropods varies greatly by taxa. Factors, such as site, year, distance from disturbance edge, as well as the disturbance itself, were important in determing the abudance, biomass, richness, and diversity of the arthropod community. There were strong year-to-year differences hat exceeded the disturbance effects. Results showed that the processess behind the intermediate disturbance hypothesis, succession and competition are not detectable in this arthropod community. This arthropod community was likely regulated in a bottom-up manner, in which herbivores ultimately control the abundance of predators and parasitoids. / x, 97 leaves : ill. ; 28 cm.
424

Biogeochemical Cycling and Microbial Communities in Native Grasslands:Responses to Climate Change and Defoliation

Attaeian, Behnaz Unknown Date
No description available.
425

Sustainable mangement of natural rangeland ecosystems

Montenegro-Ballestero, Johnny Unknown Date
No description available.
426

Factors affecting savanna tree sapling recruitment.

Vadigi, Snehalatha. 06 November 2013 (has links)
Savannas are globally important ecosystems characterized by the coexistence of trees and grasses. Woody plants, which are slow-growing dominant life forms, influence the physiognomic structure and function of savanna ecosystems. Their density and distribution provides sustenance to a vast and unique savanna biodiversity, by forming a major source of food material to large mammalian herbivores, sheltering them and through their facilitation of diverse plant species. Savanna tree existence is strongly affected by factors that determine their sapling recruitment. We defined „sapling‟ as a young tree, in the first season of its growth, which does not depend on cotyledonary reserves (=seedling stage) and relies on external resources to grow further. Sapling recruitment may strictly be defined as the progression of a young plant from seedling to sapling stage. However, we believe that savanna tree saplings, present within the grass layer in the initial years of their growth, are equally vulnerable to environmental stresses. This study examines the factors affecting tree sapling establishment in a humid savanna (1250 mm mean annual precipitation). Additionally, the effects of fire were tested in a greenhouse experiment. Dominant species from humid savannas (> 1000 mm MAP), Acacia karroo, Acacia sieberiana, Schotia brachypetala and Strychnos spinosa, and mesic savannas (approx. 750 mm MAP), Acacia nigrescens, Acacia tortilis, Colophospermum mopane and Combretum apiculatum, were studied. In this thesis I examined the effects of resource availability (water, nutrients and light), disturbances (fire and herbivory) and competition (grass) on the sapling ecology of these species. Sapling recruitment and growth were assessed in terms of survival and aboveground growth responses, i.e. total biomass, stem growth rates (used as proxy measures for assessing persistence) and leaf biomass proportion (important for producing root reserves necessary to resprout). I studied the effects of fire and a nutrient gradient on survival and growth of four Acacia species in the presence of grass competition, in a controlled greenhouse experiment. Generally, Acacias invest in defenses after herbivory. I also determined their physical and chemical defense investments in this experiment. Sapling survival was not influenced by nutrients but highly varied among the species due to fire, indicating that fires may have a differential effect on species composition at a landscape scale. Intermediate levels of nutrients were found to be beneficial for sapling growth than high and low levels. This may be due to an increase in grass competition at higher levels of nutrients. Fires did not have a positive influence on sapling defence investment. To evaluate the relative importance of resource availability on sapling tree recruitment and its interactions with grass competition, I tested the effects of water (frequent irrigation vs. rainfall), shade (presence vs. absence), nutrients (addition vs. no addition) and grass competition (presence vs. absence) on sapling survival and growth under controlled field conditions in a humid South African savanna. Treatments did not have an effect on sapling survival, indicating that mortality is not defined by resource availability and grass competition in humid savannas. Shade had the greatest negative effect on sapling growth, suppressing the beneficial effects of nutrients and absence of grass competition. Nutrient limitation and grass competition had a relatively small influence on savanna sapling growth. Frequency of water availability had no effect on sapling growth, perhaps owing to high rainfall experienced over the experimental period. Therefore, canopy shade can be considered to be an important driver of tree dynamics in humid savannas with some degree of influence by nutrient availability and grass competition. The effects of clipping (i.e. simulated herbivory of grass and tree saplings) as influenced by nutrient availability and grass competition were examined on sapling survival and growth of all study species in a humid savanna. None of the treatments had an effect on sapling survival. This signifies that herbivory alone cannot significantly decrease plant density in humid savannas. However, tree saplings grew taller with a reduction in diameter and overall biomass, implying that saplings may become more susceptible to fires after herbivory. Nutrient addition and grass competition in general had a positive and negative effect, respectively, on sapling growth. This response was prominent in the stem length growth rates of defoliated saplings of one humid and two mesic species. These results imply that clipping (or herbivory) is the major factor reducing sapling vigour to establish, but is affected by both grass competition and nutrient availability. This study shows that fire has a differential effect on sapling survival of different species, particularly between humid savanna species. Light interception among all other resources limits the recruitment of saplings into adult size classes. Clipping, nutrient availability and grass competition had a relatively small direct effect, but may interact with other factors to alter sapling establishment dynamics. Wet-season droughts in humid savannas are not a hindrance to tree establishment because sapling survival was not dependent on frequency of rainfall. Thus, in humid savannas, fires can have a major impact on tree species density and composition while canopy shade has a very high potential to alter tree distribution. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
427

Distribution patterns of epigaeic invertebrates across Afromontane forest/grassland ecotones, in KwaZulu-Natal, South Africa.

Kotze, Johan. 18 December 2013 (has links)
Considered key landscape elements, ecotones play an important role in landscape ecology. In heavily fragmented, or heterogeneous landscapes, ecotones become a major, even dominant, feature. Yet, there are relatively few studies investigating communities of invertebrates associated with ecotones, especially across natural boundaries. Furthermore, most analyses of habitat loss do not consider the characteristics of the areas surrounding remaining habitat, the matrix. This thesis attempts to partially fill the gap. Afromontane forest-grassland ecotones are characteristically sharp (usually a few metres), are mainly fire-maintained, and have been in existence for, perhaps, millions of years. Therefore they provide a good opportunity to study ecotone, forest patch and grassland matrix characteristics together, and the associated species assemblages. In short, I investigated the diversity and distribution patterns of epigaeic invertebrates across ecotones between the natural and isolated patches of Afromontane forests and the surrounding natural grassland matrix, in the province of KwaZulu-Natal, South Africa. In particular, the following primary hypothesis was evaluated; do edge effects, in terms of elevated abundance and species richness, and in terms of abrupt, significant changes in environmental conditions, occur across near-natural ecotones. These edge effects quite often occur across anthropogenically-created habitat junctions, but it is not clear whether they do across natural ones. To test this hypothesis, the following secondary hypotheses were evaluated. Firstly, often a single invertebrate taxon is used for assessing changing landscape patterns. However, recent work has suggested that patterns and responses vary widely between taxa, and that management programmes based on the knowledge of a single taxon would not necessarily predict or safeguard that of others. Therefore, in chapter I, the hypothesis whether a single taxon could be used in biodiversity studies, or alternatively, whether it is better to select an array of taxa, was tested. Several invertebrate taxa were selected to investigate this. These included terrestrial amphipods, spiders, carabids, staphylinids and ants. Indeed, results showed that species diversities and assemblage-compositions of epigaeic spiders, carabids, staphylinids and ants were significantly different in different-sized Afromontane forest patches. Only carabids and staphylinids correlated positively with each other in terms of numbers of species. The other taxa showed only weak positive, or negative, correlations in their species richness. Results supported the multi-taxa approach in conservation studies, even among groups sharing a common habitat stratum. Secondly, organismal diversity usually increases at disturbed habitat edges. This phenomenon is commonly referred to as the biological edge effect. This pattern, however, is not universal and a number of authors have shown evidence contradicting this hypothesis. In chapter II amphipods, ground beetles and ants were collected to test the biological edge effect hypothesis. In addition, a number of abiotic factors were measured across these forest-grassland boundaries in an attempt to relate the biotic with the abiotic. Little evidence was found to support the classical edge-effect hypothesis (elevated species richness at the ecotone). In fact, carabid abundance and species richness was high in forests, decreasing gradually through the ecotone to a low in grasslands. In contrast, ant species richness increased significantly from a low in forests, increasing gradually through the ecotone, to a high in grasslands. Certain species did, however, show a significant increase in abundance at the ecotone, such as Talistroides africana, a terrestrial amphipod, and Tetramorium avium, a seed-predatory ant. Afromontane forest-grassland ecotones are natural and are not the result of anthropogenic clear-cut fragmentation. They also lacked any great changes in micro-environmental conditions. I hypothesise that edge effects are of less importance at more naturally maintained habitat boundaries even if these boundaries are sharp. Thirdly, climatic variation has a major impact on invertebrate communities. The Afromontane landscape experiences hot and wet summers, and cool and dry winters. I hypothesised that invertebrate distribution patterns across an ecotone change from one season to the next (chapter III). For example, it is expected that certain winter-active species might disperse from one location along the gradient to another, perhaps to escape predators, or find winter-refugia. This would, in turn, change the pattern of distribution of the selected taxa across these ecotones. Surprisingly, the general pattern of distribution across these ecotones changed little. However, there were significant differences between summer, spring, winter and autumn catch, and species identities changed from one season to the next. For example, carabid abundance and species richness was higher in the forest, compared to in the grassland, while ants were species richer in the grassland, compared to in the forest. These patterns were consistent from one season to the next. Again, as was found in chapter II, T. africana was significantly more abundant at the ecotone, compared to either forest or grassland interiors, in all seasons throughout the year. To summarise, amphipods favoured the ecotone environment, carabids the forests and ants the grasslands, throughout the year. Finally, scientists have recently become aware of the importance of the matrix surrounding habitat patches, in the survival and occurrence of organisms in the habitat patch. I tested whether the quality of the matrix, as a function of human disturbance, has an influence on invertebrate occurrence and distribution patterns across Afromontane forest-grassland boundaries. Redgrass (Themeda triandra Forssk.) dominated Afromontane grasslands are, and have been experiencing varying degrees of anthropogenic disturbance. Consequently, ecotones vary from being very abrupt (heavy disturbance in the matrix) to gradual (little disturbance in the matrix), although still sharp compared to most ecotones elsewhere. Level of grassland disturbance influenced amphipod, carabid and ant assemblage-structure across Afromontane ecotones (chapter IV). Results support the hypothesis that the dynamics of remnant areas are influenced by factors arising in the surrounding landscape. In particular, carabid assemblage-composition changed highly significantly from undisturbed to disturbed sites (this taxon was mainly captured from forests). Furthermore, only a single carabid individual was captured from 8 to 128 m into the grassland and only 14 T. africana individuals were captured from 2 m inside the forest to 128 m into the grassland of the most disturbed site. Clearly, matrix quality influenced not only the patterns of occurrence of organisms in the grassland matrix, but also at the ecotones and in the forest patches. In conclusion, it is imperative to investigate a number of taxonomic groups in conservation ecology to give more reliable results, and thus conservation recommendations. Of course, not all taxa can be considered, and the selection of appropriate taxa still poses a problem, but a set of taxa that are considerably different biologically is a good start. Native Afromontane forest-grassland mosaics are in urgent need of conservation, as much of this habitat is subject to heavy anthropogenic disturbance such as human settlement, forestry, cattle grazing, agriculture, and frequent, out of season, fires. Unfortunately only 2% of this biome is protected in South Africa. Furthermore, matrix quality is important because it determines the survival rate of propagules moving between remnant patches of habitat, and therefore the success rate of such movements. Private land-owners own most of this grassland area in the Afromontane region, but no guidelines are available to them on how to protect this habitat. Throughout this thesis I emphasised the importance of protecting both native forest and the surrounding native grassland. A first initiative is simply to protect a zone of grassland around the forest patches, both in terms of less frequent burning regimes, and less, or no cattle grazing here. By doing so, a rich grassland ant fauna will be conserved, the grassland matrix quality will improve, and a rich carabid fauna, favouring predominantly Afromontane forest remnants, will be conserved. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 2000.
428

An experimental investigation of the effects of supplementary food and ground cover on small mammal population dynamics and community structure in a Swaziland grassland.

Monadjem, A. 23 December 2013 (has links)
The primary aim of this study was to investigate the role of food supply and ground cover on the community structure, population dynamics and demography of terrestrial small mammals in a subtropical grassland. This aim was achieved through a series of food supplementation and cover manipulation experiments conducted at eKundizeni Farm near Matsapha, Swaziland, over a 28 month period. The effects of five different diets on the rodent Mastomys natalensis were investigated in the laboratory, and the results showed that rolled oats and rabbit pellets were suitable for growth and reproduction in this species. The effects of supplementary food were investigated on two supplemented grids and one control over a twelve month period. Small mammal biomass increased significantly on the supplemented grids in relation to the control. This increase in biomass was the result of a twofold increase in the numbers of M natalensis. Food supplementation further affected M. natalensis by: extending the breeding season of females; increasing body weight; increasing survival; and decreasing home range area. Food supplementation had a weak positive effect on the density of another rodent Lemniscomys rosalia, but did not affect any other demographic feature of this species. Food supplementation did not have a demographic effect on any other species of small mammal captured. The effects of vegetative cover were investigated, over a twelve month period, on two control grids and four manipulated grids on which the vegetative cover was mechanically reduced. Supplementary food was added to two of the latter four manipulated grids. The biomass of small mammals, including M. natalensis, was lower on grids with reduced vegetative cover than on the controls. However, food supplementation resulted in a significant increase in the biomass of M. natalensis on one of the manipulated grids. Hence, M. natalensis was induced to shift to a habitat with reduced cover by the provision of supplementary food. Additional information on the population dynamics, age structure, reproduction and diet of M natalensis, L. rosalia, Mus minutoides and Steatomys pratensis is also presented. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1997.
429

A strategy for optimal beef production off sourveld.

Buntting, Clive Bartle. 06 December 2013 (has links)
The economic necessity of a better production strategy on sourveld promoted this study. Production of marketable two-tooth steers in the summer season and overwintering of all cattle without excessive feed costs were motivating factors. The problems of economic beef production were identified as resulting from the seasonal flow of forage quality from sourveld grass production. Season long rests, early burning and non-selective grazing of nutritious grass were identified as essential elements of a new utilization strategy. A 'forage reserve', built into the system to cater for fluctuations in grass production due to varied climatic conditions, is used as an indicator of the seasonal stocking rate. This provides a barometer in relation to the economic and ecological carrying capacity of the property. Research was conducted on the winter utilization of rested veld and its effects on grass species composition and vigour in the following season. It was found that the winter grazing of the rested veld did not affect (P>0.05) the subsequent production in the three seasons of this study on 'Stratherne' in the Dundee district, KwaZulu-Natal South Africa (30°17'E 28°17'S). The grass species composition of four transects was recorded in 1994, prior to the implementation of the grazing system under test. The same transects were recorded again in 2002 to determine the effect of the change in utilization on grass species composition. It was found that a more productive state was developing in response to the strategy implemented in this study. The general trend has been for sites to move from a Hyparrhenia hirta dominated state to a more productive one associated with species such as Themeda triandra. Summer mass gains of steers (147 kg and 143 kg over the two summers) have improved over the previous systems applied (average 119 kg), as a result of the more nutritious grazing. A greater proportion reached market readiness as two-year old to two and half year olds (97%) on veld, which is far superior to the 38% quoted from research using similar Bonsmara type steers from 'conventional' systems. Monitoring and flexibility are important in the application of the strategy to conditions in Africa. The principles of adaptive management (monitoring, recording, constant learning and adaptation) will build a data base to ensure long-term success of the strategy. A change of focus in grazing strategy from needs of animals to the needs of plants is strongly advocated. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2003.
430

The effects of burning and mowing on microclimate and soil resources and implications for species change in the southern tall grassveld of KwaZulu-Natal.

Ghebrehiwot, Habteab Mesghina. 10 December 2013 (has links)
Promotion of a predictive understanding of plant community response to various forms, frequencies and seasons of disturbance, either through the direct physical effect on biota and or indirect effect on plants, through modification of microclimate and soil attributes is currently a major goal in plant ecology. In particular, the effect of disturbance on altering the ratio between available light and nutrients and their resultant effect on growth, shoot/root allocation, and thus community composition has gained considerable recognition in connection with the mechanisms of plant succession under a popular heading "the resource ratio hypothesis of plant succession". Contemporary and long-term (>50 years) burning and mowing experiments in KwaZulu-Natal (KZN) provide important sites for investigation that in the mesic grasslands of KZN, community composition changes in response to the frequency, time and type of disturbances such as burning, mowing and veld fertilization. However, the relationship between disturbance-resource-plant traits and their interactive role in species change is virtually unknown. This study sought to improve understanding of mesic grassland dynamics in. KZN, using short-term pot and plot experiments. The principal objectives were: 1) by subjecting plants to different levels of resources viz. light, nutrients, water and cutting to determine the relative above and below-ground growth performances (biomass allocation) of species from contrasting habitat preference in KZN, which implies their relative competitive ability for limiting resources and tolerance to cutting, 2) by using a short-term (one-season period) burning and mowing experiment to determine the effect of different veld management practices on microclimate and availability of soil resources and their subsequent effect on plant growth performances, 3) testing the relative shade tolerance of representative species from contrasting habitat preferences, 4) by combining the outcomes from these experiments, to provide a general synthesis concerning species' response to disturbance/resource which further signifies species change. The hypothesis that competitive ability as a function of biomass allocation is fertility dependent was supported by a pot experiment. In low nutrient treatments short grass species that predominate infertile soils in KZN viz. Aristida funcifarmis and Themeda triandra attained double the shoot biomass, more than double root biomass, initiated more tillers and re-grew better (after cutting) than those inherently tall species that predominate fertile sites viz. Eragrostis curvula and Hyparrhenia hirta. In contrast, in high nutrient treatments, tall species attained far higher shoot biomass and grew taller in height. Interestingly, short species had a smaller shoot: root ratio than tall species, consistent with the prediction of the resource ratio hypothesis. However, no evidence was obtained suggesting that tall species were more shade tolerant than short species. A field-based shade experiment rather showed that, those species that initiate tillers below-ground viz. Aristida junciformis, Eragrostis curvula and Tristachya leucothrix were more shade tolerant than those species that initiate tillers above-ground viz. Hyparrhenia hirta and Themeda triandra. On the other hand, the effect of disturbance/resource relationship in influencing the growth (biomass production, growth rate, and basal circumference) of contrasting species was examined by conducting a short-term (one season) burning and mowing experiment. The effect of disturbance, its form and frequency through its effect on light and soil moisture was able to account for a substantial difference in species vigour, which can potentially impact community composition. Short species (Themeda triandra and Tristachya leucothrix) showed their highest biomass production and higher basal circumference enlargement in burnt summer mown sites, whereas medium to tall species (Aristida junciformis, Eragrostis curvula and Hyparrhenia hirta) were less tolerant to summer mowing. Aristidajunciformis and Eragrostis curvula appeared to be more vigorous (both in terms of above-ground biomass production and growth rate) in burnt but not mown and control treatment respectively. High biomass and litter accumulation on sites protected from disturbance appeared to have a large influence on species vigour. Species such as Aristida junciformis, Eragrostis curvula and Tristachya leucothrix had high tolerance to litter accumulation while in contrast Hyparrhenia hirta and Themeda triandra were more vulnerable. In total this study has revealed that the association of some short species e.g. Themeda triandra with the reccurrence of disturbance is mainly due to increases in light availability and lowered dominance from tall species in frequently disturbed sites rather than nutrient related. However, this study has revealed that there are some indications whereby the notion that the inverse relationship between available light and nitrogen are important driving variables in species change is an important working theory in the mesic grassveld of KZN. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2004.

Page generated in 0.0555 seconds