• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur la pureté des fibres de Springer affines non-ramifiées pour GL4

Chen, Zongbin 05 December 2011 (has links) (PDF)
La thèse consiste de deux parties. Dans la première partie, on montre la pureté des fibres de Springer affines pour $\gl_{4}$ dans le cas non-ramifié. Plus précisément, on construit une famille de pavages non standard en espaces affines de la grassmannienne affine, qui induisent des pavages en espaces affines de la fibre de Springer affine. Dans la deuxième partie, on introduit une notion de $\xi$-stabilité sur la grassmannienne affine $\xx$ pour le groupe $\gl_{d}$, et on calcule le polynôme de Poincaré du quotient $\xx^{\xi}/T$ de la partie $\xi$-stable $\xxs$ par le tore maximal $T$ par une processus analogue de la réduction de Harder-Narasimhan.
2

Opérations sur la K-théorie algébrique et régulateurs via la théorie homotopique des schémas

Riou, Joël 07 July 2006 (has links) (PDF)
Cette thèse est une contribution à la théorie homotopique des schémas. Dans la première partie, on poursuit les constructions de Fabien Morel et Vladimir Voevodsky en définissant la catégorie homotopique stable des sites suspendus avec intervalles. La généralité, plus grande que celle permise par la définition de John F. Jardine, permet de donner une construction rigoureuse des foncteurs " points complexes " en théorie homotopique des schémas.<br /><br />Dans la seconde partie, on montre qu'au-dessus d'un schéma de base régulier S, se donner un endomorphisme dans la catégorie homotopique de S de la grassmannienne infinie (donnant un modèle de la K-théorie algébrique d'après un théorème de Morel et Voevodsky) revient à se donner une application fonctorielle K_0(X) -> K_0(X) où X parcourt la catégorie des schémas lisses sur S. Ceci permet de construire une structure de lambda-anneau spécial sur les groupes de K-théorie algébrique supérieure et de vérifier que cette structure coïncide avec les constructions antérieures. Les opérations additives sur la K-théorie algébrique sont étudiées en détail et des versions stables de ces énoncés sont obtenues, à coefficients entiers ou rationnels. La technique utilisée permet également de construire des classes de Chern sur la K-théorie algébrique supérieure à valeurs dans la cohomologie motivique (et dans d'autres théories cohomologiques) et de montrer très explicitement l'existence de morphismes stablement fantômes en théorie homotopique des schémas.
3

Contraction de cônes complexes multidimensionnels / Contraction of complex multidimensional cones

Novel, Maxence 30 November 2018 (has links)
L'objet de cette thèse est l'introduction, l'étude et l'utilisation des cônes complexes multidimensionnels. Dans un premier temps, nous étudions la grassmannienne des espaces de Banach. Nous définissons une notion de bonne décomposition pour les espaces de dimension p et nous démontronsl'équivalence entre la distance de Hausdorff sur la grassmannienne et la distance fournie par une norme sur l'algèbre extérieure.Dans un deuxième temps, nous définissons les cônes complexes p-dimensionnels ainsi qu'une jauge sur les sous-espaces de dimension p de ces cônes. Nous montrons alors un principe de contraction pour cette jauge. Cela nous permet de prouver, pour un opérateur contractant un tel cône, l'existence d'un trou spectral séparant les p valeurs propres dominantes du reste du spectre. Nous utilisons cette théorie pourdémontrer un théorème de régularité analytique pour les exposants de Lyapunov d'un produit aléatoire d'opérateurs contractant un même cône.Nous donnons également une comparaison entre la distance de Hausdorff entre espaces vectoriels et notre jauge.Enfin, nous introduisons une notion de cône dual pour les cônes p-dimensionnels. Dans ce cadre, nous prouvons que les propriétéstopologiques d'un cône se traduisent en propriétés topologiques sur son dual, et réciproquement. Nous complétons le théorème de régularitéprécédent en démontrant l'existence et la régularité d'une décomposition de l'espace en "espace lent" et "espace rapide". / The subject of this thesis is the introduction, the study and the applications of multidimensional complex cones. First, we study the grassmannian of Banach space. We define a notion of right decomposition for p-dimensional spaces and we prove the equivalence between theHausdorff distance on the grassmannian and the distance given by a norm on the exterior algebra.Then, we define p-dimensional complex cones and a gauge on the subspaces of dimension p of these cones. We show a contraction principle for thisgauge. This allows us to prove, for an operator contracting such a cone, the existence of a spectral gap which isolate the p leading eigenvaluesfrom the rest of the spectrum. We use this theory to prove a theorem of analytic regularity for Lyapunov exponents of a random product ofoperators contracting a cone. We also give a comparison between the Hausdorff distance for vector spaces and our gauge.Finally, we introduce a notion of dual cone for p-dimensional cones. In this setting, we prove that the topological properties of a cone translateinto topological properties for its dual and conversely. We complete the previous regularity theorem by proving the existence and the regularity ofa dominated splitting of the space into a "fast space" and a "slow space".
4

Varietes kaehleriennes et hyperkaeleriennes de dimension infinie

Tumpach, Alice Barbara 26 July 2005 (has links) (PDF)
Le premier chapitre de cette thèse est consacré, d'une part à l'étude des quotients kaehlériens et hyperkaehlériens dans le cadre banachique et, d'autre part, à la construction par quotient hyperkaehlérien (d'une variété banachique non hilbertienne par un groupe de Lie banachique) d'une variété hilbertienne qui s'identifie (en fonction de la structure complexe distinguée) soit à l'espace cotangent d'une composante connexe de la grassmannienne restreinte définie par G. Segal et G. Wilson, soit à une complexification naturelle de cette grassmannienne. Le second chapitre comprend trois parties. La première partie est consacrée à la classification des orbites coadjointes affines hermitiennes symétriques irréductibles des L*-groupes de type compact. La seconde partie est consacrée a la démonstration du théorème de Mostow pour un L*-groupe semi-simple de type compact. Dans la troisième partie, je construis une structure hyperkaehlérienne sur les orbites complexifiées des orbites coadjointes affines hermitiennes symétriques des L*-groupes semi-simples de type compact.
5

Pureté des fibres de Springer affines pour GL_4 / Purity of affine Springer fiber for GL_4

Chen, Zongbin 05 December 2011 (has links)
La thèse consiste de deux parties. Dans la première partie, on montre la pureté des fibres de Springer affines pour $\gl_{4}$ dans le cas non-ramifié. Plus précisément, on construit une famille de pavages non standard en espaces affines de la grassmannienne affine, qui induisent des pavages en espaces affines de la fibre de Springer affine. Dans la deuxième partie, on introduit une notion de $\xi$-stabilité sur la grassmannienne affine $\xx$ pour le groupe $\gl_{d}$, et on calcule le polynôme de Poincaré du quotient $\xx^{\xi}/T$ de la partie $\xi$-stable $\xxs$ par le tore maximal $T$ par une processus analogue de la réduction de Harder-Narasimhan. / This thesis consists of two parts. In the first part, we prove the purity of affine Springer fibers for $\gl_{4}$ in the unramified case. More precisely, we have constructed a family of non standard affine pavings for the affine grassmannian, which induce an affine paving for the affine Springer fiber. In the second part, we introduce a notion of $\xi$-stability on the affine grassmannian $\xx$ for the group $G=\gl_{d}$, and we calculate the Poincaré polynomial of the quotient $\xx^{\xi}/T$ of the stable part $\xxs$ by the maximal torus $T$ by a process analogue to the Harder-Narasimhan reduction.
6

Dynamique des opérateurs sur les Grassmanniennes

Ernst, Romuald 03 December 2013 (has links) (PDF)
Les travaux présentés dans cette thèse concernent la dynamique d'opérateurs pour des sous-espaces. Nous étudions principalement deux notions de dynamique pour des sous-espaces qui sont la n-supercyclicité et la forte n-supercyclicité. Dans une première partie, nous étudions l'existence de tels opérateurs dans le cadre des espaces de dimension finie et nous exhibons les indices de supercyclicité admissibles pour des espaces réels de dimension finie. Dans une deuxième partie, nous étudions en détail les opérateurs fortement n-supercycliques en exhibant leurs propriétés spectrales et en donnant des caractérisations pour certaines classes d'opérateurs. Nous détaillons ensuite une nouvelle notion de dynamique pour des sous-espaces de codimension finie et nous étudions les propriétés de tels opérateurs, en particulier le lien "dual" avec les opérateurs fortement n-supercycliques. Enfin, nous terminons avec une caractérisation des opérateurs chaotiques sur certains types d'espaces de suites sans base inconditionnelle, un critère de supercyclicité pour des opérateurs non-bornés et une condition suffisante pour obtenir un opérateur multiple mélangeant de tout degré.
7

Quelques problèmes de géométrie Finslérienne et Kählerienne / Some problems on Finsler and Kähler geometry

Adouani, Ines 11 May 2015 (has links)
Cette thèse traite de quelques problèmes classiques en géométrie complexe. La première partie est consacrée à la géométrie Finslérienne complexe. Étant donnés deux fibrés vectoriels holomorphes E1 et E2, munis respectivement de deux structures Finslériennes F1 et F2, on construit une métrique Finslérienne F sur le fibré E 1 ⊗ E 2 faisant intervenir les structures Finslériennes initiales. Moyennant une hypothèse sur les sections globales de E1* et E2*, on donne une condition optimale sous laquelle F est strictement pseudo convexe à courbure négative. Ce résultat est présenté après un chapitre constituant un background Finslérien témoignant de la recherche bibliographique en amont de cette thèse et de quelques initiatives et essais personnels. La seconde partie de ce travail traite d'un problème en géométrie Kählerienne. On prouve l'existence d'une fonction "extrémale" minorant toutes les fonctions admissibles (c'est à dire strictement pseudo convexe à la métrique initiale près) à sup nul sur des variétés de Fano non toriques, à savoir la grassmannienne complexe G m,nm ( C ). Les fonctions considérées sont invariantes par un groupe d'automorphismes convenablement choisi. Cette minoration est faite dans le but de calculer l'invariant de Tian sur de telles variétés, les initiatives dans le cas non torique restant très rares, même sur les variétés les plus simples. / This thesis deals with some classical problems in complex geometry. The first part is devoted to a problem in complex Finsler Geometry. Giving two holomorphic vector bundles E1 and E2, respectively endowed with two Finsler structures F1 and F2, we build a Finsler metric F on E 1 ⊗ E 2 involving the two initial Finsler structures. This is done under some assumptions on global sections of E1* and E2*. We give an optimal condition under which F is strictly pseudo convex with negative curvature. This result is preceded by a chapter containing a background material in complex Finsler geometry and some personal attempts. The second part of this thesis deals with a problem in Kähler Geometry. We prove the existence of an "extremal" function lower bounding all admissible functions (ie plurisubharmonic functions modulo a metric) with sup equal to zero on the complex Grassmann manifold G m,nm ( C ). The functions considered are invariant under a suitable automorphisms group. This gives a conceptually simple method to compute Tian's invariant in the case of a non toric manifold.
8

Dynamique des opérateurs sur les Grassmanniennes / Dynamics of linear operators on Grassmannians

Ernst, Romuald 03 December 2013 (has links)
Les travaux présentés dans cette thèse concernent la dynamique d'opérateurs pour des sous-espaces. Nous étudions principalement deux notions de dynamique pour des sous-espaces qui sont la n-supercyclicité et la forte n-supercyclicité. Dans une première partie, nous étudions l'existence de tels opérateurs dans le cadre des espaces de dimension finie et nous exhibons les indices de supercyclicité admissibles pour des espaces réels de dimension finie. Dans une deuxième partie, nous étudions en détail les opérateurs fortement n-supercycliques en exhibant leurs propriétés spectrales et en donnant des caractérisations pour certaines classes d'opérateurs. Nous détaillons ensuite une nouvelle notion de dynamique pour des sous-espaces de codimension finie et nous étudions les propriétés de tels opérateurs, en particulier le lien "dual" avec les opérateurs fortement n-supercycliques. Enfin, nous terminons avec une caractérisation des opérateurs chaotiques sur certains types d'espaces de suites sans base inconditionnelle, un critère de supercyclicité pour des opérateurs non-bornés et une condition suffisante pour obtenir un opérateur multiple mélangeant de tout degré. / This dissertation deals with some recent notions of linear dynamics of subspaces. In the first part, we provide a detailed study of n-supercyclicity and strong n-supercyclicicty in the finite dimensional setting. In particular we give a characterisation of the indices for which there exist n-supercyclic operators. We focus then on spectral properties of strongly n-supercyclic operators and on general properties as well. We also provide examples of operators whose supercyclic and strongly n-supercyclic behaviour are different. We introduce a new class of operators dealing with orbits of subspaces of finite codimension and we exhibit a \dual\ link with strong n-supercyclicity. Independently of these results, we give a characterisation of chaotic weighted shifts on a class of sequence spaces not necessarily admitting an unconditional basis. We conclude with a study of supercyclicity for unbounded operators and a sufficient condition to obtain multiple mixing operators.

Page generated in 0.2055 seconds