• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle size distribution and suspension stability in aqueous submicron grinding of CaCO<sub>3</sub> and TiO<sub>2</sub>

Ohenoja, K. (Katja) 30 September 2014 (has links)
Abstract During the past decade submicron and nanoparticles have aroused a wide interest and gained new applications due to their high surface area and strength. Grinding with a wet stirred media mill is usually the last process step before the submicron or nanoparticles are added to an application, and the step where the final particle size distribution is achieved. Since stirred media milling is an energy-intensive process, energy efficiency should be optimized. This can be done by determining the optimum operational parameters for the mill and using the highest possible solids concentration. The solids concentration can be increased by controlling particle-particle interactions with stabilization chemicals, e.g. polymers. This thesis concerns parameters and grinding aids affecting the particle size distribution and suspension stability of the aqueous submicron grinding of calcium carbonate (CaCO3) and titanium dioxide (TiO2) in stirred media mills. TiO2 particles are aggregates produced via a bottom-up method, while CaCO3 are primary mineral particles produced by a top-down method. The most energy efficient grinding of TiO2 to a 300 nm particle size with the narrowest possible particle size distribution was obtained with the lowest stress energy, implying the smallest grinding medium size. It was observed that electrosteric stabilization with sodium polyacrylates was effective for TiO2, and sodium polyacrylate with a molecular weight of 12500 g/mol was found to be the most effective for reducing the viscosity of the suspension. As with TiO2, electrosteric stabilization with sodium polyacrylates was also found to be effective for CaCO3, but in this case sodium polyacrylate with a lower polydispersity index was more effective, showing a better stabilization potential in micron and submicron grinding and reducing the viscosity and particle size to a greater extent. Nanogrinding experiments were performed for a CaCO3 suspension with low PDI sodium polyacrylate and it was found to be possible to obtain a particle size of 26 nm, smaller than any size previously reported when grinding CaCO3. / Tiivistelmä Viimeisen kymmenen vuoden aikana alle yhden mikrometrin partikkelit ovat herättäneet kiinnostusta ja niille on kehitetty uusia sovelluksia niiden suuren pinta-alan ja lujuuden ansiosta. Ultrahienojauhatus märkähelmimyllyllä on useimmiten viimeinen prosessivaihe ennen partikkelien lisäämistä sovelluskohteeseen ja siinä saavutetaan partikkelien lopullinen partikkelikokojakauma. Helmimyllyjauhatuksen energiankulutus minimoidaan etsimällä optimioperointiparametrit kullekin jauhatusprosessille ja käyttämällä korkeinta mahdollista suspension kuiva-ainepitoisuutta. Suspension kuiva-ainepitoisuutta voidaan nostaa hallitsemalla partikkelien välisiä vuorovaikutuksia stabilointiaineilla, kuten polymeereillä. Tässä väitöskirjassa tutkittiin operointiparametrien ja jauhatusapuaineiden vaikutusta titaanidioksidin (TiO2) ja kalsiumkarbonaatin (CaCO3) partikkelikokojakaumaan ja lietteen stabiilisuuteen submikronijauhatuksessa. Tutkitut TiO2-partikkelit olivat aggregaatteja, jotka oli valmistettu sulfaattiprosessilla saostamalla, ja tutkitut CaCO3-partikkelit olivat primäärisiä mineraalipartikkeleita. TiO2-partikkeleille saavutettiin energiatehokkain jauhatus ja samalla toivottu partikkelikokojakauma, eli mediaani 300 nm ja mahdollisimman kapea jakauma, pienillä helmillä, jotka aiheuttavat partikkeleihin pienimmän puristusenergian. Elektrosteerinen stabilointi käyttämällä natriumpolyakrylaatteja stabilointiaineena havaittiin tehokkaaksi menetelmäksi hallita TiO2-partikkelien välisiä vuorovaikutuksia. Natriumpolyakrylaatti, jonka molekyylimassa oli 12500 g/mol, oli tehokkain TiO2-partikkeleille alentaen suspension viskositeettiä eniten. Myös CaCO3-partikkeleille elektrosteerinen stabilointi natriumpolyakrylaatteja käyttäen oli tehokkain stabilointimenetelmä. Myös natriumpolyakrylaattien polydispersiteetti-indeksin vaikutusta tutkittiin CaCO3-suspensioille. Tulokset osoittivat matalan polydispersiteetti-indeksin olevan tehokkaampi alentaen viskositteettia ja pienentäen partikkelikokoa tehokkaammin kuin natriumpolyakrylaatti, jolla oli korkeampi polydispersitetti-indeksi. Tämän vuoksi natriumpolyakrylaatti, jolla oli matala polydispersiteetti-indeksi, valittiin nanojauhatuskokeisiin. Kokeissa CaCO3-partikkelit saatiin jauhettua 26 nm kokoon, joka on pienin koskaan aiemmin jauhamalla saavutettu koko CaCO3-partikkeleille.
2

Aplicação de modelos cinético e energético para análise da fragmentação ultrafina de partículas de calcário e quartzo em moinho planetário de bolas

SANTOS, Juliano Barbosa dos 12 May 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-07-10T18:48:53Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertação completa.pdf: 8076647 bytes, checksum: 5dc16e9ca5f10026afed3fda08fda16b (MD5) / Made available in DSpace on 2017-07-10T18:48:53Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertação completa.pdf: 8076647 bytes, checksum: 5dc16e9ca5f10026afed3fda08fda16b (MD5) Previous issue date: 2016-05-12 / Minerais industriais em faixas ultrafinas (< 10 μm) têm suas propriedades potencializadas em relação ao mesmo mineral com maior granulometria. Os materiais ultrafinos são utilizados em diversos seguimentos industriais; por exemplo: materiais cerâmicos, papel e celulose, fármacos, polímeros e tintas. A produção de ultrafinos ocorre em moinhos de alta energia. Dentre estes, o moinho planetário de bolas destaca-se pelas altas taxas de redução de tamanho e pelo fato de poderem ser alimentados via seco ou via úmido em regime contínuo (escala industrial) ou por batelada. A produção de ultrafinos é limitada pelo consumo de energia e pela necessidade de controle das condições operacionais, tamanho, morfologia e composição das partículas. Para otimização das variáveis do processo, usam-se ferramentas computacionais embasadas em modelos matemáticos, tais como os modelos de balanço populacional (MBP), dada pela equação da moagem por batelada, e modelos energéticos. Este trabalho teve por objetivo estudar modelos cinético e energéticos, sendo o primeiro uma solução analítica da equação da moagem por batelada utilizado para descrever as distribuições de tamanhos de partículas, e o segundo dado pela relação energia-tamanho, que prevê uma taxa de redução de tamanho ilimitada, e pela relação tempo-tamanho, que está fundamentada na taxa de moagem () e no limite de moagem. Os modelos foram aplicados em duas centenas de curvas granulométricas resultantes de ensaios de moagem executados anteriormente em alíquotas de calcário e quartzo (duas procedências) com massa e granulometria controladas. Os tempos de moagem variaram de 2 a 960 minutos com velocidades de revolução de 100 a 300 rpm. Os ajustes dos modelos cinético e energéticos foram avaliados considerando os seguintes fatores: coeficiente de determinação (R2), erro padrão (EP), erro de ajuste () e índice de dependência (ID). O modelo cinético apresentou, para a maioria das condições de moagem testadas, grande incerteza associada a alguns de seus parâmetros ( > 10%), tornando os ajustes insatisfatórios segundo os critérios utilizados. Os fatores de avaliação para o modelo cinético só foram adequados para o quartzo de uma procedência, na faixa de 38x75 μm, satisfazendo a condição de compensação estabelecida. No caso dos modelos energéticos, os ajustes obtidos para a relação energiatamanho foram melhores para aquelas situações em que os diâmetros característicos não apresentaram uma estabilização em seu decrescimento. Por sua vez, a relação tempo-tamanho mostrou ajustes compatíveis com as situações em que foi observado um estado estático de decrescimento dos diâmetros característicos, atingindo o limite de moagem. A partir dos ajustes da relação tempo-tamanho foi possível determinar uma constante k’ que caracterizasse a resistência à fragmentação do material em função das condições de moagem estudadas. Os valores dessa constante mostraram que materiais mais resistentes à fragmentação possuem os menores valores de k’, que variaram entre 0,96 e 2,6 g/J para o calcário e entre 0,06 a 0,53 g/J para o quartzo. Concluiu-se, que o modelo cinético foi incompatível com a moagem ultrafina, devida a presença de eventos significativos de aglomeração e interações mecânicas multipartículas, confirmados pela variação do índice de uniformidade () com o tempo de moagem. Os modelos energéticos se complementam na descrição dos resultados experimentais. Logo um modelo intermediário que considere uma taxa de redução de tamanho como uma função potência, com um expoente e um parâmetro (l) que represente o limite de moagem, seja o mais recomendado para a representação dos processos de moagem ultrafina de minerais industriais. / Industrial minerals in ultrafine ranges (< 10 μm) have their properties potentiated compared to the same mineral with larger particle size. The ultrafine materials are used in several industries; for example, ceramics, paper and cellulose, pharmaceuticals, polymers and paints. The production of ultrafine occurs in high energy mills. Among these mills, the planetary ball mill stand out by high rates and can be fed dry or wet in continuous (industrial scale) or batch operation. The production of ultrafine is limited by the energy consumption and the need to control of the operating conditions, size, morphology and composition of the particles. Computational tools based on mathematical models are used in the optimization and control of process variables, such as the population balance models (MBP), given by equation milling batch, and energetic models. This work has as objective to study kinetic and energetic models, the first is a analytical solution for the batch grinding equation used to describe particle size distributions; the second given by the energy-size relations, which predict a size reduction rate unlimited, and by the time-size relations, which are based on the milling rate () and grinding limit. The models were applied to two hundred of particle sizes distributions curves resulting from grinding tests performed previously in aliquots of limestone and quartz (two origins) with control of mass and particle size. The milling times range 2 - 960 min with revolution speeds of 100 to 300 rpm. The fits of the kinetic and energetic models were evaluated considering the following factors: coefficient of determination (R2), standard error (SE), fit error (ε) and dependency index (ID). The kinetic model showed uncertainty associated with some of its parameters (ε > 10%) for most of the grinding conditions tested, resulting in unsatisfactory fits to the criteria used. The evaluation factors for the kinetic model were only suitable for one quartz, in the range of 38x75 μm satisfying the compensation condition. In the case of energetic models, the fits to the energy-size relation were better for those situations where the characteristic diameters did not show a stabilization in its decrease. On the other hand, the sizetime relation shown compatible fits with the situation where was observed a decrease static state of the characteristic diameters reaching the grinding limit. From the fits of the time-size relation was possible to determine a constant ′ that characterizes the resistance to fragmentation of the material depending on the grinding conditions studied. The values of this constant showed that materials more resistant to fragmentation have the smaller ′ values, ranging between 0.96 and 2.6 g/J for the limestone and from 0,06 to 0.53 g/J to quartz. It was concluded that the kinetic model was incompatible with ultrafine grinding, due to the presence of significant events of multi-particle interactions and agglomeration, which was confirmed by variation in the uniformity index (′) in milling time function. Energetic models complemented each other for description of the experimental results. Ready an intermediate model which consider a size reduction rate as a power function with an exponent η and a parameter (l) representing the grinding limit is the most recommended for the representation of the ultrafine grinding processes of industrial minerals.

Page generated in 0.056 seconds