• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 79
  • 65
  • 33
  • 32
  • 29
  • 25
  • 21
  • 19
  • 16
  • 14
  • 14
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analysis of alternative energy options for buildings

Rezaie, Behnaz 01 August 2009 (has links)
The importance of utilizing different types of energy and their technical application is discussed. Awareness around the globe about the world energy crisis and its critical environmental condition has put more emphasis on the use of renewable energies in every corner of life. It is a well‐known fact that global warming, inefficient use of energy and greenhouse gases are damaging the environment, species and human life drastically. These issues will be discussed in recently conducted research. To address the crucial state of our environment, two simultaneous scenarios are considered. Initially, energy conservation and the switch to a low carbon/no carbon fuel are studied. As for energy conservation in buildings, smart methods in the use of energy in buildings are discussed. Based on different research reported, humans must change their attitude toward the use of resources, and in particular, be conscientious about energy consumption. Next, renewable energy promises a suitable alternative to energy needs in this century, and the best means to overcome the environmental issue and energy crisis is discussed. The practical methods of calculation for solar technology equipment, ground source heat pumps, and wind turbines are explained. In the application part of the study, four buildings are chosen as case studies; two of them from residential sectors, one is a commercial/institutional building, and the fourth is an industrial building. A ground source heat pump for heating and cooling, a solar water heater for heating space or hot water, and a photovoltaic panel for generating electricity are designed for the case studies. Even projects under hybrid systems combined from two technologies are designed. 36 different energy options are calculated for the four case studies. Results show that if a target is reducing CO2 emissions, what systems are the best. In contrast, when decision making is based on budget, what system is the first choice? Not only are technology, environmental protection and cost the main parameters for deciding on renewable technologies, but so are reliability, installation, maintenance and ease of use. Hence, renewable energy systems are categorized based on a broad vision.
22

Informing the practice of ground heat exchanger design through numerical simulations

Haslam, Simon R. January 2013 (has links)
Closed-loop ground source heat pumps (GSHPs) are used to transfer thermal energy between the subsurface and conditioned spaces for heating and cooling applications. A basic GSHP is composed of a ground heat exchanger (GHX), which is a closed loop of pipe buried in the shallow subsurface circulating a heat exchange fluid, connected to a heat pump. These systems offer an energy efficient alternative to conventional heating and cooling systems; however, installation costs are higher due to the additional cost associated with the GHX. By further developing our understanding of how these ground loops interact with the subsurface, it may possible to design them more intelligently, efficiently, and economically. To gain insight into the physical processes occurring between the GHX and the subsurface and to identify efficiencies and inefficiencies in GSHP design and operation, two main research goals were defined: comprehensive monitoring of a fully functioning GSHP and intensive simulation of these systems using computer models. A 6-ton GSHP was installed at a residence in Elora, ON. An array of 64 temperature sensors was installed on and surrounding the GHX and power consumption and temperature sensors were installed on the system inside the residence. The data collected were used to help characterize and understand the function of the system, provide motivation for further investigations, and assess the impact of the time of use billing scheme on GSHP operation costs. To simulate GSHPs, two computer models were utilized. A 3D finite element model was employed to analyse the effects of pipe configuration and pipe spacing on system performance. A unique, transient 1D finite difference heat conduction model was developed to simulate a single pipe in a U-tube shape with inter-pipe interactions and was benchmarked against a tested analytical solution. The model was used to compare quasi-steady state and transient simulation of GSHPs, identify system performance efficiencies through pump schedule optimization, and investigate the effect of pipe length on system performance. A comprehensive comparison of steady state and pulsed simulation concludes that it is possible to simulate transient operation using a steady state assumption for some cases. Optimal pipe configurations are identified for a range of soil thermal properties. Optimized pump schedules are identified and analysed for a specific heat pump and fluid circulation pump. Finally, the effect of pipe spacing and length on system performance is characterized. It was found that there are few design inefficiencies that could be easily addressed to improve general design practice.
23

Simulation of Photovoltaic Panel Production as Complement to Ground Source Heat Pump System

Badri, Seyed Ali Mohammad January 2013 (has links)
This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.
24

Development of an integrated building load-ground source heat pump model as a test bed to assess short- and long-term heat pump and ground loop performance

Gaspredes, Jonathan Louis 08 February 2012 (has links)
Ground source heat pumps (GSHP) have the ability to significantly reduce the energy required to heat and cool buildings. Historically, deployment of GSHP's in the cooling-dominated Texas and Southwest region has been significantly less than in other regions of the United States. The long term technical and economic viability of GSHPs in arid regions such as Texas has been questioned due to failures of ground loop heat pump systems by early adopters. A proposed solution is to include a supplemental heat rejection (SHR) device to help offset the unbalanced ground loads. An integrated building load-ground source heat pump model is developed in this thesis and is designed to be a test bed for potential SHR devices. The model consists of discrete component models that can be mixed and matched to represent various types of buildings and ground source heat pumps. One of the unique features of the integrated model is the use of the Simulink/Matlab environment. This environment allows the user to develop component models that take advantage of the built-in functionality of Matlab and Simulink. Another unique feature is the full coupling of the building load, heat pump, and ground loop at every time step. The building load, heat pump, and ground loop models were chosen to allow for short time step simulations, which allows for a range of dynamic response times to be modeled and for different heat pump/SHR control methods to be explored. The integrated model can be used on any computer that has the Matlab and Simulink software. The building load model used, called HAMBASE, can model both residential and commercial buildings. HAMBASE was validated using the ASHRAE 140-2007 standard. The heat pump model uses readily available data provided by GSHP manufacturers to accurately model operation across a wide range of input conditions. The vertical borehole ground loop model, developed at Oklahoma State University, is based on Eskillson's g-function model, but included a one-dimensional numerical model to calculate the short term thermal response of the borehole and ground. The ground loop model utilizes GLHEPRO, a ground loop sizing and simulation tool, to create the required parameter files. Using the integrated building load-ground source heat pump model, a model of a single family house with a ground source heat pump was developed. The house model was validated by the results from eQuest and GELHPRO. A series of sensitivity studies were completed to determine dominant factors affecting the use of GSHPs in Texas and the Southwest regions of the United States. The results show that the life of a vertical borehole can be significantly extended/cut short if the ground parameters are properly/not properly designed prior to ground loop sizing. / text
25

Supplemental heat rejection in ground source heat pumps for residential houses in Texas and other semi-arid regions

Balasubramanian, Siddharth 08 February 2012 (has links)
Ground source heat pumps (GSHP) are efficient alternatives to air source heat pumps to provide heating and cooling for conditioned buildings. GSHPs are widely deployed in the midwest and eastern regions of the United States but less so in Texas and the southwest regions whose climates are described as being semi-arid. In these semi-arid regions, building loads are typically cooling dominated so the unbalance in energy loads to the ground, coupled with less conductive soil, cause the ground temperature to increase over time if the ground loop is not properly sized. To address this ground heating problem especially in commercial building applications, GSHPs are coupled with supplemental heat recovery/rejection (SHR) systems that remove heat from the water before it is circulated back into the ground loops. These hybrid ground source heat pump systems are designed to reduce ground heating and to lower the initial costs by requiring less number of or shallower boreholes to be drilled. This thesis provides detailed analyses of different SHR systems coupled to GSHPs specifically for residential buildings. The systems are analyzed and sized for a 2100 ft2 residential house, using Austin, Texas weather data and ground conditions. The SHR systems investigated are described by two heat rejection strategies: 1) reject heat directly from the water before it enters the ground loops and 2) reject heat from the refrigerant loop of the vapor compression cycle (VCC) of the heat pump so less heat is transferred to the water loop at the condenser of the VCC. The SHR systems analyzed in this thesis are cooling towers, optimized VCC, expanded desuperheaters and thermosyphons. The cooling towers focus on the direct heat rejection from the water loop. The VCC, desuperheater, and thermosyphon systems focus on minimizing the amount of heat rejected by the VCC refrigerant to the water loop. In each case, a detailed description of the model is presented, a parametric analysis is provided to determine the amounts of heat that can be rejected from the water loop for various cases of operation, and the practical feasibility of implementation is discussed. An economic analysis is also provided to determine the cost effectiveness of each method. / text
26

Combined permeable pavement and ground source heat pump systems

Grabowiecki, Piotr January 2010 (has links)
The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within the sub‐base. Salmonella sp, Escherichia coli, Enterococci and total heterotrophic bacteria were analysed in order to assess potential risk to health. Supplementary carbon dioxide monitoring indicated relatively high microbial activity on the geotextile and within the lower parts of the sub‐base. Anaerobic processes were concentrated in the space around the geotextile, where carbon dioxide concentrations reached up to 2000 ppm. The overall water treatment potential was high, with up to 99% biochemical oxygen demand removal. Variable removal efficiencies have been calculated for nutrients such as ortho‐phosphate‐phosphorus, ammonia and nitrates/nitrites. Calculated Coefficients of Performance and Energy Efficiency Rates provided evidence on correctness of GSHP design. Collected data was analysed with non‐parametrical statistics and a self‐organizing map model was used to assess relationships between variables. Findings present correlations considered as low and insignificant between temperature fluctuations and pathogen numbers. Highly significant correlations (p<0.01) were calculated for influent‐effluent relationships. Air and water temperatures and water quality data variability within the systems provided evidence for the high level of biological processes leading to a low risk of pathogen transition to human.
27

Informing the practice of ground heat exchanger design through numerical simulations

Haslam, Simon R. January 2013 (has links)
Closed-loop ground source heat pumps (GSHPs) are used to transfer thermal energy between the subsurface and conditioned spaces for heating and cooling applications. A basic GSHP is composed of a ground heat exchanger (GHX), which is a closed loop of pipe buried in the shallow subsurface circulating a heat exchange fluid, connected to a heat pump. These systems offer an energy efficient alternative to conventional heating and cooling systems; however, installation costs are higher due to the additional cost associated with the GHX. By further developing our understanding of how these ground loops interact with the subsurface, it may possible to design them more intelligently, efficiently, and economically. To gain insight into the physical processes occurring between the GHX and the subsurface and to identify efficiencies and inefficiencies in GSHP design and operation, two main research goals were defined: comprehensive monitoring of a fully functioning GSHP and intensive simulation of these systems using computer models. A 6-ton GSHP was installed at a residence in Elora, ON. An array of 64 temperature sensors was installed on and surrounding the GHX and power consumption and temperature sensors were installed on the system inside the residence. The data collected were used to help characterize and understand the function of the system, provide motivation for further investigations, and assess the impact of the time of use billing scheme on GSHP operation costs. To simulate GSHPs, two computer models were utilized. A 3D finite element model was employed to analyse the effects of pipe configuration and pipe spacing on system performance. A unique, transient 1D finite difference heat conduction model was developed to simulate a single pipe in a U-tube shape with inter-pipe interactions and was benchmarked against a tested analytical solution. The model was used to compare quasi-steady state and transient simulation of GSHPs, identify system performance efficiencies through pump schedule optimization, and investigate the effect of pipe length on system performance. A comprehensive comparison of steady state and pulsed simulation concludes that it is possible to simulate transient operation using a steady state assumption for some cases. Optimal pipe configurations are identified for a range of soil thermal properties. Optimized pump schedules are identified and analysed for a specific heat pump and fluid circulation pump. Finally, the effect of pipe spacing and length on system performance is characterized. It was found that there are few design inefficiencies that could be easily addressed to improve general design practice.
28

Computer modelling and simulation of geothermal heat pump and ground-coupled liquid desiccant air conditioning systems in sub-tropical regions

Lee, Chun-kwong. January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 177-192) Also available in print.
29

Energy survey on replacing a direct electrical heating system with an alternative heating system

Ruan, Wenbo January 2018 (has links)
With the ever-growing energy demand that world is currently going through and the danger of climate change around the corner, wagering in renewable energy seems to be the right path to create a more smart and green future. Sweden has put great effort on decreasing its dependency on oil, in fact in 2012 more than 50 % of its electricity came from the renewable source and has a plan in making it 100 % in 2040. However, when it comes to heating systems Sweden depends greatly on district heating, and situations which buildings are located outside the district heating system’s reach is not uncommon, hence for those buildings, other options such as solar power or heat pumps are considered. Many buildings located in Skutskär suffer from the problem stated above. The particular building analyzed in this thesis uses electrical radiator and furnace as sources of heat, which implies high energy uses and financial expenses. For this reason technical and financial analysis of using each alternative system for a single family house located in Skutskär had been done. Using solar powered system is deemed to be quite ineffective, as Sweden has poor solar radiation. In order to compensate the poor sun hours during the winter, 51 photovoltaic (PV) panels or 19 solar thermal panels would be required. This high initial investment needs long period of time in order to be profitable, 15 years for solar thermal system and 21 years for solar PV system. On the other hand, the results from the heat pumps are quite satisfactory, the fastest payback period is around 4 years. This is achieved by using air source heat pump (ASHP), the annual saving in this case is three times higher than using solar photovoltaic panels, making the usage of ASHP more attractive than any solar energy system. However, when annual saving is concerned, the ground source heat pump (GSHP) system is capable of generating even higher saving, but the initial investment is significantly higher, extending the payback period to 6 years.
30

Simulation of an energy efficient single-family house in the area of Smedjebacken to meet Miljöbyggnad’s Gold House energy category requirements

Daroudi, Parham January 2018 (has links)
Since the building construction area is accounted for high share of energy usage (36 %) in Europe, there is high demand to pay attention to this area accurately. Sweden which is one of the pioneer countries in terms of building energy efficiency plans to reduce this value to 50 % by 2050. To reduce this value there is a need to define a mandatory guideline for builders by the government. So national board of housing, building and planning (Boverket) were given responsibility to define these regulations for builders and house owners. Parallel with that Swedish green building council developed a certification considering the buildin g’s energy demand, indoor air climate and environmental impact of building called Miljöbyggnad. While all the existing and new buildings following Boverket’s regulations meet this certification’s lowest limitations, some ambitious builders tend to fulfil its highest level of limitations called Gold level. This study aimed to design a house in the area of Smedjebacken to meet Miljö byggnad’s gold house’s energy category requirements. To meet the mentioned requirements several parametric studies regarding insulation thickness, windows assembly, heating and ventilation system are done via simulation software called TRNSYS. The result of testing several models show that although windows assembly does not affect this building ’s energy demand very much, other parameters such as insulation ’s thickness and type of heating system have a key role. In addition, a parametric study regarding the impact of thermal mass on the building energy demand is performed. The result shows that the effect of removed massive wood is compensated by replaced additional mineral wool insulation. In conclusion it is concluded that a single family house located in a cold climate like Smedjebacken using district heating cannot meet Miljöbyggnad’s gold level criteria without help of heat recovery ventilation. Furthermore, building with ground source heat pump as its heating system can meet Miljöbyggnad’s principals easier than those having district heating. In this case building with 200 mm insulation thickness even with exhaust air ventilation meets certification principals easily.

Page generated in 0.0611 seconds