• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 79
  • 65
  • 33
  • 32
  • 29
  • 25
  • 21
  • 19
  • 16
  • 14
  • 14
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Effects of coolant flow rate, groundwater table fluctuations and infiltration of rainwater on the efficiency of heat recovery from near surface soil layers

Mohamed, Mostafa H.A., El Kezza, O., Abdel-Aal, Mohamad, Schellart, A., Tait, Simon J. 19 June 2014 (has links)
No / This paper aims to investigate experimentally the effects of circulating coolant flow rate, groundwater table fluctuations, infiltration of rainwater, on the amount of thermal energy that can be recovered from the near surface soil layers. A comprehensive experimental investigation was carried out on a fully equipped tank filled with sand. A heat collector panel was embedded horizontally at the mid-height of the tank. Measurements of the temperature at various points on the heat collector panel, adjacent soil, inlet and outlet were continuously monitored and recorded. After reaching a steady state, it was observed that increasing water saturation in the adjacent soil leads to a substantial increase on the amount of heat recovered. A model was proposed for the estimation of temperature along the heat collector panel based on steady state conditions. It accounted for thermal resistance between pipes and the variability of water saturation in the adjacent soils. This model showed good agreement with the data. Whilst increasing the flow rate of the circulating fluid within the panel did not cause noticeable improvement on the amount of heat energy that can be harnessed within the laminar flow regime commonly found in ground source heat panels. Infiltration of rainwater would cause a temporary enhancement on the amount of extracted heat. Measurement of the sand thermal conductivity during a cycle of drying and wetting indicates that the thermal conductivity is primarily dependent upon the degree of water saturation and secondary on the flow path.
42

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand

McDaniel, Matthew Lee 29 July 2011 (has links)
The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation (GSHP-ERV) system to present a novel approach to space condition and domestic hot water supply for a residence. The proposed system is capable of providing hot water on-demand with a high coefficient of performance (COP), thus eliminating the need for a hot water storage tank and circulation system while requiring little power consumption. The necessary size of the proposed system and the maximum and normal heating and cooling loads for the home were calculated based on the assumptions of an energy efficient home, the assumed construction specifications, and the climate characteristics of the Blacksburg, Virginia region. The results from the load analysis were used to predict energy consumption and costs associated with annual operations.The results for the predicted heating annual energy consumption and costs for the GSHP-ERV system were compared to an air-source heat pump and a natural gas furnace. On average, it was determined that the proposed system was capable of reducing annual energy consumption by 56-78% over air-source heat pumps and 85-88% over a natural gas furnace. The proposed GSHP-ERV system reduced costs by 45-61% over air-source heat pump systems and 52-58% over natural gas furnaces. The annual energy consumption and costs associated with cooling were not calculated as cooling accounts for a negligible portion (6%) of the total annual energy demand for a home in Blacksburg. / Master of Science
43

Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks I and II Buildings, Blacksburg, Virginia

Charoenvisal, Kongkun 14 August 2008 (has links)
Heating, Ventilating and Air Conditioning Systems (HVAC) are not only one of the most energy consuming components in buildings but also contribute to green house gas emissions. As a result often environmental design strategies are focused on the performance of these systems. New HVAC technologies such as Geothermal Heat Pump systems have relatively high performance efficiencies when compared to typical systems and therefore could be part of whole-building performance design strategies. In collaboration with the Virginia Tech Corporate Research Center, Inc., this research studies the energy consumption and cost benefits of the Geothermal Heat Pump System that has been integrated and operated in the KnowledgeWorks I and II buildings located on the Virginia Tech campus. The purpose of this thesis is to understand the energy and cost benefits of the Geothermal Heat Pumps System when compared to the conventional package variable air volume (VAV) with hot water coil heating and air-source heat pump systems using computer simulation and statistical models. The quantitative methods of building energy performance and life-cycle cost analyses are applied to evaluate the results of simulation models, the in-situ monitoring data, and the associated documents. This understanding can be expanded to the higher level of architectural systems integration. / Master of Science
44

Ekonomisk driftoptimering av det termiska energisystemet på Karlstad centralsjukhus : Framtida driftrekommendationer baserat på linjärprogrammering / Economic operational optimization of the thermal energy system at Karlstad central hospital : Future operation recommendations based on linear programming

Mellander, Petter January 2022 (has links)
Studien använder linjärprogrammering för att optimera driften av det termiska energisystemet på Karlstad centralsjukhus ur ett ekonomiskt perspektiv. Bakgrunden till studien är de höga elpriser som rådde under slutet av 2021 samt att det i dagsläget finns kunskapsluckor angående hur systemet bör köras optimalt. Studien baseras på driftdata från 2021. Energisystemet som optimeras är uppbyggt av kylvärmepumpar, bergvärmepumpar, kylmaskiner, frikyla, fjärrvärme och marklager. Ett förhållande för hur många kWh termisk energi som produceras per tillförd kWh el tas fram för samtliga komponenter, vilket sedan används för att modellera energisystemet. Optimering av systemet ger vilka komponenter som skall användas vid olika tidpunkter för att uppfylla ett bestämt värmebehov och kylbehov. Resultatet i form av optimal drift under 2021 analyseras och används för att ta fram driftrekommendationer för energisystemet i framtiden. En metod för att teoretiskt begränsa marklagrets kapacitet vid optimering presenteras. Metodenanvänder nettoenergi till marklagret över en specifik tidsperiod för att approximera temperaturen på brinevätskan ut ur marklagret. Genom att sätta temperaturbegränsningar på brinevätskan kan därigenom nettoenergin till marklagret begränsas. Baserat på data från 2021 tillåts nettoenergin till marklagretvariera mellan -14 700 kWh och 12 500 kWh per 24 timmar. Resultaten visar att det under vintern är fördelaktigt att primärt använda bergvärmepumparna A-D i kombination med frikyla. Sekundärt används kylvärmepumparna E-F. Skillnaden mellan primär och sekundär systemlösning är liten och de båda kan ses som relativt likvärdiga. Fjärrvärme används enbart som sista alternativ under vintern. Energikällan för bergvärmepumparna bör variera mellan Klarälven och marklager med avsikt att utnyttja marklagrets kapacitet optimalt. Vår och höst fallet är till stora delar likvärdigt med vinterfallet med undantaget att det innehåller fler variationer till följd av förändringar i omgivande förutsättningar. Under sommaren bör enbart fjärrvärme användas för att tillgodose värmebehovet. Frikyla och kylmaskinerna 2-3 används för att tillgodose kylbehovet. Frikyla reserveras till att användas under de tidpunkter då kylbehovet är som högst. Effektavgiften för fjärrvärme står för 25,7 % av total driftkostnad i optimalt driftfall. För att minska kostnaderna anses det därför viktigt att kapa effekttopparna för fjärrvärme. Studien undersöker eventuella fördelar med att koppla frikyle-värmeväxlaren mot Klarälven med avsikt att kunna utnyttja den mer än vad som görs i dagsläget. Systemlösningen ger ingen signifikant minskning av driftkostnader vid simulering av ett års drift. Det kan dock vara fördelaktigt att koppla frikyla mot Klarälven ur perspektivet att kunna justera nettoenergin till marklagret för att förhindra långsiktiga temperaturförändringar i berggrunden. Årlig driftkostnad kan minskas genom att öka maxkapaciteten för värmepumparna. En ökning avbergvärmepumparnas kapacitet motsvarande en komponent minskar total årlig kostnad med 4,6 %. En ökning av kylvärmepumparnas kapacitet motsvarande en komponent minskar total årlig kostnad med 1,5 %. Att öka maxkapaciteten för övriga komponenter ger ingen signifikant förändring av årlig driftkostnad. Förbättring av studien innebär att basera modellen på bättre indata samt ta hänsyn till fler detaljer i systemet. Vidare studier bör fokusera på att tillämpa resultaten för att verifiera dem i verkligheten samt göra investeringskalkyler över att utöka kapaciteten för värmepumparna. / The study uses linear programming to optimize the operation of the thermal energy system at Karlstad Central Hospital from an economic perspective. The background to the study is the high electricity prices that occurred at the end of 2021 and the fact that there are currently knowledge gaps regarding how the system should be run optimally. The study is based on operational data from 2021. The energy system that is optimized is made up of cooling heat pumps, ground source heat pumps, cooling machines, free cooling, district heating and ground storage. A ratio for how many kWh of thermal energy that is produced per kWh of supplied electricity was produced for all components, which was then used to model the energy system. Optimization of the system provides which components are to be used at different times to meet a specific heating and cooling demand. The result in the form of optimal operation during 2021 is analyzed and used to produce operating recommendations for the energy system in the future. A method for theoretically limiting the capacity of the ground storage during optimization is presented. The method uses net energy to the ground storage over a specific period of time to approximate the temperature of the brine liquid out of the ground storage. By setting temperature limits on the brine liquid, the net energy to the ground storage can thereby be limited. Based on data from 2021, the net energy to the ground storage is allowed to vary between -14 700 kWh and 12 500 kWh per 24 hours. The results show that during the winter it is advantageous to primarily use the ground source heat pumps A-D in combination with free cooling. Secondary, the cooling heat pumps E-F are used. The difference between primary and secondary system solution is small and the two can be seen as relatively equivalent. District heating is only used as a last resort during the winter. The energy source for the ground source heat pumps should vary between the Klarälven river and the ground storage with the intention of utilizing the capacity of the ground storage optimally. The spring and autumn case is largely equivalent to the winter case, with the exception that it contains more variations as a result of changes in surrounding conditions. During the summer, only district heating should be used to meet the heat demand. Free cooling and cooling machines 2-3 are used to meet the cooling needs. Free cooling is reserved for use during the times when the cooling demand is at its highest.The power fee for district heating accounts for 25.7% of the total operating cost in the optimal operating case. To reduce costs, it is therefore considered important to cut the power peaks for district heating. The study examines the possible benefits of connecting the free cooling heat exchanger to the Klarälven river with the intention of being able to use it more than what is currently the case. The system solution does not provide a significant reduction in operating costs when simulating one year of operation. It might however be advantageous to connect free cooling to the Klarälven river from the perspective of being able to adjust the net energy to the ground storage to prevent long-term temperature changes in the bedrock. Annual operating costs can be reduced by increasing the maximum capacity of the heat pumps. An increase in the capacity of the ground source heat pumps equivalent to one component reduces the total annual cost by 4.6%. An increase in the capacity of the cooling heat pumps equivalent to one component reduces the total annual cost by 1.5%. Increasing the maximum capacity for the other components does not result in a significant change in annual operating costs. Improvements of the study means basing the model on better input data and taking into account more details in the system. Further studies should focus on applying the results to verify them in reality andmake investment calculations regarding expansion of the capacity of the heat pumps
45

Dimensioning and control for heat pump systems using a combination of vertical and horizontal ground-coupled heat exchangers / Dimensionering och styrning för värmepumpssystem som använder en kombination av vertikala och horisontella markvärmekollektorer

Denker, Richard January 2015 (has links)
A model has been developed which simulates a system consisting of a horizontal and vertical ground-coupled heat exchanger connected in parallel to the same heat pump. The model was used in computer simulations to investigate how the annual minimum and mean fluid temperatures at the heat pump varied as several parameters of the combined system were changed. A comparison was also made between different control settings for fluid flow rate distribution between the two exchangers. For the case when the flow rate distribution was not controlled, the effect of viscosity differences between a colder and warmer exchanger was investigated. The short term effects of letting the vertical heat source rest during the warm summer months was then tested. Lastly, the results of the model was compared to a simple 'rule of thumb' that have been used in the industry for this kind of combined system. The results show that using a combined system might not always result in increased performance, if the previously existing exchanger is a vertical ground-coupled heat exchanger. The effects of viscosity differences on the flow distribution seems to be negligible, especially for high net flows. Controlling the fluid flow rates seems to only be worth the effort if the the pipe lengths of the two combined exchangers differ heavily. Letting the vertical ground-coupled heat exchanger rest during summer was shown to in some cases yield an increased short-term performance in addition to the already known positive long term effects. The rule of thumb was shown to recommend smaller dimensions for combination systems than the more realistic analytical model.
46

Geoterminio šildymo ekonominis ir techninis įvertinimas / An economic and technical evaluation of geothermal heating

Tamošaitis, Donatas 24 February 2011 (has links)
Žemės šilumos siurblių sistemos surenka žemės šilumą, dažniausiai vertikaliu U formos gręžinio šilumokaičiu. U formos gręžinio šilumokaičio našumas priklauso nuo šiluminių žemės savybių, taip pat nuo gręžinyje naudojamo skiedinio ar užpildo. Siekiant, kad Žemės šilumos siurblių sistemos pasiteisintų, projektuojant reikia atsižvelgti į geologinių struktūrų šiluminį laidumą ir gręžinio šilumokaičio šiluminę varžą. Šio darbo tikslas buvo nustatyti šilumos siurblio, naudojančio grunto šilumą, pritaikymo individualioje sodyboje siurblio techninis ir ekonominis įvertinimas. Nustatyta, kad investicijos projektui įgyvendinti, kai gyvenamajam pastatui šildyti ir buitiniam karštam vandeniui ruošti šildymo sezono metu šilumą gamina šilumos siurblys, naudojantis grunto šilumą, palyginti su tiesioginiu elektros naudojimu pastatui šildyti ir buitiniam karštam vandeniui ruošti, atsiperka per 6,3 metus. Šiluminės reakcijos testas padeda nustatyti šiluminį žemės laidumą (λ) gręžinio šilumokaičio įrengimo vietoje, bei efektyvią gręžinio šilumokaičio šiluminę varžą (Rb). Pagrindinis tikslas buvo suderinti gręžinio šilumokaitį su žemės sąlygomis, taip pat nustatyti gręžinio gylio poveikį (60 m: VB2; 90 m: VB3). / Ground source heat pump systems exchange heat with the ground, often through a vertical, U-tube, borehole heat exchanger. The performance of this U-tube borehole heat exchanger depends on the thermal properties of the ground formation, as well as grout or backfill in the borehole. The design and economic probability of ground source heat pump systems need the thermal conductivity of geological structure and thermal resistance of borehole heat exchanger. An economic and technical evaluation of the heat pump, which is using ground heat, in individual homestead. It was found that the investment for this project, when heat pump using ground heat is used to heat residential building and domestic hot water in heating season, compared with the use of direct electric heating of buildings and domestic hot water payback within 6.3 years. Thermal response test method allows the in-situ determination of the thermal conductivity (l) of the ground formation in the vicinity of a borehole heat exchanger, as well as the effective thermal resistance (Rb) of this latter. The main goal has been to determine same in-situ ground type of borehole heat exchanger, including the effect of borehole’s depths (60 m: VB2; 90 m: VB3).
47

Effects of ground-coupled heat pumps on hydrogeologic systems : Ball State University / Effects of ground coupled heat pumps on hydrogeologic systems

Dunn, Marsha E. 20 July 2013 (has links)
In 2009 Ball State University began construction on the nation’s largest ground-source geothermal system in attempt to reduce its environmental impacts and heating/cooling expenses. Since late November 2011, half of the geothermal system has been operational. Due to only partial geothermal use and a warm winter in 2011, thermal increases can be seen throughout the Phase 1 fields. After system initiation in 2011, an average temperature increase of 4.33°C has been observed in the bottom 80-120+ meters in the middle of the South Field, while no increase was found in the southern-edge well of the North Field. To evaluate thermal increases, hydraulic characteristics were gathered including groundwater flow direction, hydraulic gradients and hydraulic conductivities. Varying temperatures throughout the area may affect the groundwater geochemistry. Geochemical results indicate a calcium-bicarbonate facies. / Geothermal well field construction -- Study site -- Methods -- Results -- Discussion. / Department of Geological Sciences
48

Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel / A method for estimating the annual performance of a predictive controller for ground source heat pumps on a semi-virtual test bench

Salque, Tristan 15 October 2013 (has links)
Avec le développement récent de régulateurs innovants pour le bâtiment, il devient nécessaire de mettre au point une méthode de test qui soit à la fois rapide, reproductible et réaliste. La méthode développée dans cette thèse permet d'obtenir des performances annuelles de régulateurs de pompes à chaleurs (PAC) géothermiques en seulement quelques jours de test. Basé sur une technique d'émulation déjà utilisée pour des tests de PAC géothermiques et de systèmes solaires combinés, le test permet d'incorporer le régulateur et la PAC réels dans un environnement de simulation calibré par des mesures in-situ. Chaque jour de test correspond à un jour type de chaque mois. Le développement de la méthode consiste à déterminer la séquence de jours types optimale permettant une bonne estimation des performances. La méthode est ensuite testée expérimentalement sur le banc semi-virtuel pour comparer un régulateur prédictif à un régulateur conventionnel sur une saison de chauffage. Pour les besoins de la méthode, un régulateur prédictif de PAC géothermiques est développé. Ce régulateur utilise des réseaux de neurones pour la prévision des données météo et de la température ambiante. Un nouveau module pour la prévision des températures dans le plancher chauffant et les sondes géothermiques est proposé. Le régulateur prédictif est testé par simulation sur une saison de chauffage pour différents climats et types de maisons individuelles. En fonction de la référence, les économies d'énergie réalisées varient entre 6% et 15%. / With the recent development of innovative controllers for the building, there is a need to develop a testing method that is fast, reproducible and realistic. The method developed in this study aims to estimate the annual performance of ground source heat pump (GSHP) controllers in only a few days of test. Based on emulation techniques already used for GSHP and solar combined systems, the test immerses the controller and a real GSHP in a simulated environement that is calibrated with in-situ data. Each day of test represents a typical day of the month. The development of the method consists in determining the optimal typical days that ensure an accurate estimation of annual performance. The method is then experimentally tested on the semi-virtual test bench for the comparison of a predictive controller and a conventionnal controller over an entire heating season.To develop the method, a predictive controller for GSHP is elaborated. The controller is based on artificial neural networks used for the prediction of weather data and indoor temperature. A new module for the prediction of floor heating and boreholes fluid temperatures is also proposed. The predictive controller is tested by simulation over a heating season for various climates and types of single family house. According to the reference case, the energy savings vary between 6% and 15%.
49

Thermal Numerical Analysis of Vertical Heat Extraction Systems in Landfills

Onnen, Michael Thomas 01 June 2014 (has links)
An investigation was conducted to determine the response of landfills to the operation of a vertical ground source heat pump (i.e., heat extraction system, HES). Elevated landfill temperatures, reported various researchers, impact the engineering performance of landfill systems. A numerical model was developed to analyze the influence of vertical HES operation on landfills as a function of climate and operational conditions. A 1-D model of the vertical profile of a landfill was developed to approximate fluid temperatures in the HES. A 2-D model was then analyzed over a 40 year time period using the approximate fluid temperatures to determine the heat flux applied by the HES and resulting landfill temperatures. Vertical HES configurations simulations consisted of 15 simulations varying 5 fluid velocities and 3 pipe sizes. Operational simulations consisted of 26 parametric evaluations of waste placement, waste height, waste filling rate, vertical landfill expansions, HES placement time, climate, and waste heating. Vertical HES operation in a landfill environment was determined to have 3 phases: heat extraction phase, transitional phase, and ground source heat pump phase. During the heat extraction phase, the heat extraction rate ranged from 0 to 2550, 310 to 3080, and 0 to 530 W for the first year, peak year, and last year of HES operation, respectively. The maximum total heat energy extracted during the heat extraction phase ranged from 163,000 to 1,400,000 MJ. The maximum difference in baseline landfill temperatures and temperatures 0 m away from the HES ranged from 5.2 to 43.2°C. Climate was determined to be the most significant factor impacting the vertical HES. Trends pertaining to performance of numerous variables (fluid velocity, pipe size, waste placement, waste height, waste filling rate, vertical landfill expansions, HES placement time, climate, and waste heating) were determined during this investigation. Increasing fluid velocity until turbulent flow was reached increased the heat extraction rate by the system. Once turbulent flow was reached, the increase in heat extraction rate with increasing fluid velocity was negligible. An increase in the heat extraction rate was caused by increasing pipe diameter. Wastes placed in warmer months caused an increase in the total heat energy extracted. Increasing waste height caused an increase in the peak heat extraction rate by 43 W/m waste height. Optimum heat extraction per 1 m of HES occurred for a 30 m waste height. Increasing the waste filling rate increased the total heat energy extracted. Heat extraction rates decreased as time between vertical landfill expansions increase. Total heat energy extracted over a 35 year period decreased by approximately 21,500 MJ/year for every year after the final cover was placed until HES operation began. For seasonal HES operation, the total heat energy obtained each year differs and the fourth year of operation yielded the most energy. Wet Climates with higher heat generating capacities yielded increased heat extraction rates. Maximum temperature differences in the landfill due to the HES increased by 16.6°C for every 1 W/m3 increase in peak heat generation rate. When a vertical HES was used for waste heating, up to a 13.7% increase in methane production was predicted. Engineering considerations (spacing, financial impact, and effect on gas production) for implementing a vertical HES in a landfill were investigated. Spacing requirements between the wells were dependent on maximum temperature differences in the landfill. Spacing requirements of 12, 12, 16, and 22 m are recommended for waste heating, winter-only HES operation, maximum temperature differences in the landfill less than 17°C, and maximum temperature differences in the landfill greater than 17°C, respectively. A financial analysis was conducted on the cost of implementing a single vertical HES well. The energy extracted per cost ranged from 0.227 to 0.150 $/MJ for a 50.8 mm pipe with a 1.0 m/s fluid velocity and a 50.8 mm pipe with a 0.3 m/s fluid velocity, respectively. A vertical HES could potentially increase revenue from a typical landfill gas energy project by $577,000 per year.
50

Understanding Green Energy Technology : Learning Processes in the Development of the Ground Source Heat Pump

Gidén Hember, Amanda January 2020 (has links)
The aim of this thesis is to increase the understanding of small-scale green energy technology development. In the transition towards a fossil free energy system, heat pumps are a low emission heating alternative. Contrary to other types of new small-scale green energy technology such as solar cells and electric vehicles, heat pumps are established on the Swedish market, with more than half the share of single family buildings. This makes it possible to study an example of a mature technology, and that knowledge could be used in the development and deployment of other technologies with similar small-scale green characteristics. The type of heat pump technology studied is ground source heat pumps, and their development is explored from an economic and performance perspective, using the concept of learning. Learning tracks how a product develops for each doubling of units produced. The results show that the efficiency has increased by a learning rate of 2.8 %. When the effects of a low-temperature heating system is included, the learning rate is even higher, 5.8 %. The efficiency improvement is mainly due to new and more expensive components, which has resulted in a price increase. Even if the price slightly decreased until 2008, it has increased with 29 % since. Nevertheless, the ground source heat pump is profitable compared to several other heating technologies. The most important factors underpinning the development are regulations, competition among manufacturers and research.

Page generated in 0.05 seconds