• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 79
  • 65
  • 33
  • 32
  • 29
  • 25
  • 21
  • 19
  • 16
  • 14
  • 14
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Understanding numerically generated g-functions: A study case for a 6x6 borehole field

Perez Gonzalez, Jesus Angel January 2013 (has links)
The Ground Source Heat Pump systems (GSHP) are an emerging technology used to exchange heat with the ground through the use of some buried heat exchangers. The thermal response of a borehole field can be characterized by its g-function. It is a non-dimensional temperature response factor, which can be calculated using either numerical or analytical solutions. Eskilson developed the first study made for the calculation of these g-functionts. Lamarche and Beauchamp proposed another analytical approach based on the Finite Line Source (FLS). Generally, both solutions present similar results with some small differences. They could be attributed to the boundary condition performed in both researches: the FLS solution considers uniform heat flux along the borehole wall in all the heat exchangers, while Eskilson’s model defines as a condition, uniform temperature at the borehole wall within all the pipes in the field. In this Master of Science Thesis, the temperature response factors (g-functions) of a 6x6 borehole field with 36 heat exchangers (BHE) arranged in a squared configuration are obtained from new numerical models, mainly based on the use of a highly conductive material composing the BHE. For this purpose, a commercial software called Comsol Multyphisics© is employed. The aim of this thesis is to get larger knowledge in generating the g-function in relation to the boundary condition performed in the model trying to reach better approximations to the reality. Some strategies with respect to the geometry, size of the model and mesh are performed to reduce the computing time. The influence of the geothermal heat flux and the influence of the highly conductive material (HCM) composing the BHEs are also studied in our model. Going further, the thermal behavior of the ground is also studied by imposing variable heating and cooling loads during seasonal periods over a time of 25 years. Finally, the g-functions obtained from our numerical models are compared to the one generated with the commercial software, Earth Energy Design (EED), which represents the numerical solution proposed by Eskilson, and the one generated with FLS approach. The results may explain in a closer approximation to the reality the thermal response for large borehole fields.
52

Optimization of thermal response test equipment and evaluation tools

Simondon, Camille January 2014 (has links)
Nowadays Ground Source Heat Pumps (GSHP) are widely used to provide heating and/or cooling as well as domestic hot water in commercial and residential buildings. The Swedish GSHPs market is the first one in the European Union with more than 378,000 units installed until 2010 according to the Swedish Heat Pump Association (SVEP). This thesis focuses on the improvement of a Thermal Response Test (TRT) apparatus available at KTH Royal Institute of Technology – Energy Technology Department. This equipment aims at improving Borehole Heat Exchanger (BHE) design in terms of size. Its key purpose is to evaluate two main BHE properties: the ground thermal conductivity and the borehole thermal resistance. A new command software is developed in order to control the TRT equipment and run TRT measurements. This new software is developed using Python as programming language and replaces an older program which needed LabVIEW to run. The TRT command software designed in this thesis provides the user with a simple and user-friendly interface to control each device of the equipment. Measurements are exported and saved to files which can be open with both Microsoft Excel and the analysis tool also developed in this thesis. The stand-alone evaluation tool can be used to analyse TRT and/or DTRT measurements. This analysis tool helps the user to compute large amount of data with few data manipulation and low computation time. Model parameters and TRT/DTRT measurement can be imported from files into it and different fitting settings are available to run the optimization, i.e. account for baseline variations (early activities in the borehole, different optimization periods, analysis during thermal recovery of the ground, single/multi-sectional analysis along the depth, among others). This report covers a theoretical description of TRT experiments and its models, the objectives of such a project and the development of the control and evaluation tools.
53

NUMERICAL MODELLING OF A NOVEL PVT COLLECTOR AT CELL RESOLUTION

Schön, Gustav January 2017 (has links)
Solar photovoltaic-thermal (PVT) modules produce heat and power via a heat exchanger attached to the rear of the PV cells. The novel PVT collector in this study is previously untested and therefore its behaviour and thermo-electric performance due to fluid channel configuration and in various climate and operating conditions are unknown. Moreover, the working fluid flowing through the heat exchanger cause a temperature gradient across the module such that a cell near the inlet and a cell near the outlet may have significant temperature differences. PV cells are sensitive to temperature; however the most common way to simulate power output from a PVT is to use the average temperature and ignore the gradient. In this study, a single diode PV model is incorporated into a commercial thermal solver to co-simulate the thermal and electrical output of a novel PVT module design with cell level resolution. The PVT system is modelled in steady state under various wind speeds, inlet temperatures, ambient temperatures, flow rates, irradiation, convection coefficients from coolant and back of the module and two different fluid channel configurations. The results show that of the controllable variables, the inlet temperature has the highest influence of the total power output and that a parallel flow of the fluid channel configuration is preferable. The difference between the cell resolution and the module resolution simulations do not motivate the use of a higher resolution numerical simulation. / En kombinerad solcellspanel och solvärmefångare (PVT) producerar värme och elenergi på samma yta genom att en värmeväxlare upptar värmen från baksidan av solcellspanelen. Den PVT som berörs i denna studien är nyutvecklad och har aldrig tidigare testats, vilket medför att data för hur den beter sig samt dess termo-elektiska prestanda saknas för olika driftförhållanden samt flödeskonfigurationer. Vidare ger mediet som flödar genom värmeväxlaren upphov till en temperaturgradient, vilken kan innebära en påtaglig skillnad i temperatur mellan solcellerna i solcellspanelen vid mediets in- respektive utlopp. Trots solcellers temperaturkänslighet, så sker simulering i allmänhet med avseende på panelens medeltemperatur istället för att hänsyn tas till denna temperaturgradient. I den här studien implementeras en så kallad  ”single diode”-modell i en kommersiell numerisk mjukvara termiska beräkningar för att samsimulera termiskt och elektriskt effektuttag ur den nyutvecklade PVT-designen. Designen modelleras statiskt under givna variationer av vindhastighet, inloppstemperatur, omgivande temperatur, flödeshastighet, solinstrålning och konvektionskoefficienter för mediet samt baksidan av modulen. Resultaten visar att kontrollerbara variabler som inloppstemperatur har högst inverkan på den totala effekten samt att en parallell flödeskonfiguration lämpar sig bäst. Studien visar också att skillnaden mellan simulering på cellnivå och modulnivå inte motiverar en numerisk beräkningsmetod med upplösning satt till solcellsnivå.
54

NUMERICAL ANALYSIS OF COUPLING A SOLAR THERMAL SYSTEM WITH GROUND SOURCE HEAT PUMP SYSTEM

Zamanian, Mohammad January 2024 (has links)
A ground source heat pump (GSHP) system utilizes a borehole heat exchanger to extract energy from the ground during the heating season and to deposit energy during the cooling season. This requires the drilling of an extended borehole, typically ranging from 100 to 200 meters in length, with a diameter of approximately 6 to 8 inches. Inside the borehole, a U-shaped tube is placed and surrounded by a grout that aids heat transfer between the tube and the surrounding soil. A heat transfer fluid, often a mixture of water and glycol, circulates through the tube to exchange heat with the ground. During the winter, the system draws energy from the ground for household space heating, while in the summer, when air conditioning is used, it expels energy from the house into the ground. In regions with heating-dominated climates, such as Canada, more energy is withdrawn from the ground during the winter than can be naturally restored during the summer. Consequently, the soil progressively cools over time, leading to reduced heat pump coefficient of performance and a decline in the overall system efficiency. This study explores a solution to this issue by integrating solar domestic hot water systems which employ solar thermal collectors to heat water for domestic purposes. These systems are relatively straightforward, consisting of solar thermal collectors, piping, pumps, a hot water tank, and controllers. The collector area is designed to deliver high solar fractions during the summer, but it typically exhibits lower efficiency in the winter. In Toronto, annual solar fraction, defined as the proportion of energy supplied by the solar thermal system to the total energy required by the load, typically range between 50-70%. This research aims to leverage solar thermal collectors for recharging the ground during the summer months. This approach enables the installation of larger collector areas, improving system performance in the winter, while simultaneously depositing excess energy into the ground during the summer. Notably, this study focuses on a single household located in Toronto, Canada, where the recommended solar thermal collector area is 10 square meters, and the borehole heat exchanger length is 150 meters. Also, it is assumed that four people are living in this house and required energy for heating and cooling of the house are 28000 and 7000 kWh per year, respectively. This approach offers a promising solution to balance seasonal heat transfer to the ground, mitigating the long-term decline in GSHP performance. The study demonstrates that by coupling the solar thermal system with the GSHP, the targeted outcomes are achievable. / Thesis / Master of Applied Science (MASc)
55

Analysis of ground-source heat pumps in north-of-England homes

Ali, Alexis, Mohamed, Mostafa H.A., Abdel-Aal, Mohamad, Schellart, A., Tait, Simon J. 09 June 2016 (has links)
Yes / The performance of Ground Source Heat Pump (GSHP) systems for domestic use is an increasing area of study in the UK. This paper examines the thermal performance of three bespoke shallow horizontal GSHP systems installed in newly built residential houses in the North of England against a control house which was fitted with a standard gas boiler. A total of 350 metres of High Density Polyethylene pipe with an external diameter of 40 mm was used for each house as a heat pump loop. The study investigated (i) the performance of a single loop horizontal Ground Heat Exchanger (GHE) against a double loop GHE and (ii) rainfall effects on heat extraction by comparing a system with an infiltration trench connected to roof drainage against a system without an infiltration trench above the ground loops. Parameters monitored for a full year from October 2013 to September 2014. Using the double GHE has shown an enhanced performance of up to 20% compared with single GHE. The infiltration trench is found to improve performance of the heat pumps; the double loop GHE system with an infiltration trench had a COP 5% higher than that of the double loop GHE system without a trench.
56

Improvements of U-pipe Borehole Heat Exchangers

Acuña, José January 2010 (has links)
<p>The sales of Ground Source Heat Pumps in Sweden and many other countries are having a rapid growth in the last decade. Today, there are approximately 360 000 systems installed in Sweden, with a growing rate of about 30 000 installations per year. The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a Borehole Heat Exchanger (BHE), a closed loop in a vertical borehole. The fluid transports the heat from the ground to a certain heating and/or cooling application. A fluid with one degree higher or lower temperature coming out from the borehole may represent a 2-3% change in the COP of a heat pump system. It is therefore of great relevance to design cost effective and easy to install borehole heat exchangers. U-pipe BHEs consisting of two equal cylindrical pipes connected together at the borehole bottom have dominated the market for several years in spite of their relatively poor thermal performance and, still, there exist many uncertainties about how to optimize them. Although more efficient BHEs have been discussed for many years, the introduction of new designs has been practically lacking. However, the interest for innovation within this field is increasing nowadays and more effective methods for injecting or extracting heat into/from the ground (better BHEs) with smaller temperature differences between the heat secondary fluid and the surrounding bedrock must be suggested for introduction into the market.</p><p>This report presents the analysis of several groundwater filled borehole heat exchangers, including standard and alternative U-pipe configurations (e.g. with spacers, grooves), as well as two coaxial designs. The study embraces measurements of borehole deviation, ground water flow, undisturbed ground temperature profile, secondary fluid and groundwater temperature variations in time, theoretical analyses with a FEM software, Distributed Thermal Response Test (DTRT), and pressure drop. Significant attention is devoted to distributed temperature measurements using optic fiber cables along the BHEs during heat extraction and heat injection from and to the ground.</p> / QC 20100517 / EFFSYS2 / Efficient Use of Energy Wells for Heat Pumps
57

Värmeöverföring i bergvärmesystem : En numerisk analys av den ringformade koaxiala borrhålsvärmeväxlaren / Heat transfer in ground source heat pump systems : A numerical analysis of the annular coaxial borehole heat exchanger

Westin, Rasmus January 2012 (has links)
The borehole heat exchangers of today suffer from poor thermal and hydrodynamic performance. The purpose of this thesis is to improve the performance of ground source heat pump systems and thermal energy storages by increasing the energy efficiency of the borehole heat exchangers. For this reason, the annular coaxial borehole heat exchanger (CBHE) has been analyzed. This type of heat exchanger is interesting in terms of both thermal and hydrodynamic performance. A model has been set up in the program Comsol Multiphysics in order to investigate the heat transfer characteristics along the borehole. A literature survey that summarizes the analytical calculation methods developed in earlier Swedish research is presented in the report. Different geometries with or without insulation of the central pipe have been analyzed and the effective borehole resistance for each geometry has been calculated based on the simulation results. The model has been validated against a recently performed thermal response test, and shows very good correlation with reality. The results from the simulations show that by using the annular CBHE an increase of 2-3 °C in the evaporator of the heat pump can be achieved. Calculations show that the pump work (head loss) can be reduced to 1/6 of the corresponding case with a single U-pipe. There arises a vertical temperature gradient in the bedrock when recharging and extracting heat with the annular CBHE. This means that the annular CBHE acts like a counter-flow heat exchanger which is thermally optimal. In total, the simulation result shows that the annular CBHE geometry in this thesis can increase a system's seasonal performance factor (SPF) with 10-19 % in comparison with a U-pipe BHE. This is equivalent to 10-19 % lower electrical power consumption every year.
58

Numerical analysis using simulations for a geothermal heat pump system. : Case study: modelling an energy efficient house

Ilisei, Gheorghe January 2018 (has links)
The ground source resources are becoming more and more popular and now the ground source heat pumps are frequently used for heating and cooling different types of buildings. This thesis aims at giving a contribution in the development of the thermal modelling of borehole heat storage systems. Furthermore, its objective is to investigate the possibility of implementing of a GSHP (ground source heat pump) with vertical boreholes, in order to deliver the heating and cooling demand for a passive house and to emphasize some certain advantages of this equipment even in the case of a small building (e.g. residential house). A case study is presented to a suitable modelling tool for the estimation of the thermal behaviour of these systems GSHP by combining the outcome from different modelling programs. In order to do that, a very efficient residential solar house (EFden House – a passive residential single-family house, which was projected and built in Bucharest with academic purposes) is being analysed. The numerical results are produced using the software DesignBuilder, EED (Earth Energy Designer) and a sizing method for the length of the boreholes (ASHRAE method). The idea of using 2 different modelling programs and another sizing method for the borehole heat exchanger design (ASHRAE method) is to make sure that all the calculations and results are valid and reliable when analysing such a system theoretically (in the first phases of implementing a project), before performing a geotechnical study or a thermal response test in order to assess the feasibility of such a project beforehand. The results highlight that the length of the borehole, which is the main design parameter and also a good index in estimating the cost of the system, is directly influenced by the other fundamental variables like thermal conductivity of the grout, of the soil and the heat carrier fluid. Also, some correlations between these parameters and the COP (coefficient of performance) of the system were made. The idea of sizing the length of boreholes using two different methods shows the reliability of the modelling tool. The results showed a difference of only 2.5%.  Moreover, the length of borehole is very important as it was calculated that can trigger a difference in electricity consumption of the GSHP up to 28%. It also showed the fact that the design of the whole system can be done beforehand just using modelling tools, without performing tests in-situ. The method aims at being considered as an efficient tool to estimate the length of the borehole of a GSHP system using several modelling tools. / <p>The presentation was made via Skype due to the programme being online based</p>
59

On the efficient and sustainable utilisation of shallow geothermal energy by using borehole heat exchangers

Hein, Philipp Sebastian 16 January 2018 (has links) (PDF)
In the context of energy transition, geothermics play an important role for the heating and cooling supply of both residential and commercial buildings. Thereby, the increasingly and intensive utilisation of shallow geothermal resources bears the risk of over-exploitation and thus poses a future challenge to ensure the sustainability and safety of such systems. Particularly, the well-established technology of borehole heat exchanger-coupled ground source heat pumps is applied for the thermal exploitation of the shallow subsurface. Due to the complexity of the involved physical processes, numerical modelling proves to be a powerful tool to enhance process understanding as well as to aid the planning and design processes. Simulations can also support the management of thermal subsurface resources, planning and decision-making on city and regional scales. In this work, the so-called dual-continuum approach was adopted and enhanced to develop a coupled numerical model considering flow and heat transport processes in both the subsurface and borehole heat exchangers as well as the heat pumps’ performance characteristics, and including the relevant phenomena influencing the underlying processes. Beside the temperature fields, the efficiency and thus the consumption of electrical energy by the heat pump is computed, allowing for the quantification of operational costs and equivalent carbon-dioxide emissions. The model is validated and applied to a number of numerical studies. First, a comprehensive sensitivity analysis on the efficiency and sustainability of such systems is performed. Second, a method for the quantification of technically extractable shallow geothermal energy is proposed. This procedure is demonstrated by means of a case study for the city of Cologne, Germany and its implications are discussed. / Im Rahmen der Energiewende nimmt die Geothermie eine besondere Rolle in der thermische Gebäudeversorgung ein. Die zunehmende, intensive Nutzung oberflächennaher geothermischer Ressourcen erhöht die Gefahr der übermäßigen thermischen Ausbeutung des Untergrundes und stellt damit eine wachsende Herausforderung für die Nachhaltigkeit und Sicherheit solcher Systeme dar. Zur Erschließung oberflächennaher geothermischer Energie wird insbesondere die etablierte Technologie Erdwärmesonden-gekoppelter Wärmepumpen eingesetzt. Aufgrund der daran beteiligten komplexen physikalischen Prozesse erweisen sich numerische Modelle als leistungsfähiges Werkzeug zur Erweiterung des Prozessverständnisses und Unterstützung des Planungs- und Auslegungsprozesses. Zudem können Simulationen zum Management thermischer Ressourcen im Untergrund sowie zur Planung und politischen Entscheidungsfindung auf städtischen und regionalen Maßstäben beitragen. Im Rahmen dieser Arbeit wurde, basierend auf dem sogenannten ”dual-continuum approach” und unter Berücksichtigung des Einflusses der Wärmepumpe, ein erweitertes gekoppeltes numerisches Modell zur Abbildung der in Erdwärmesonden und dem Untergrund stattfindenden Strömungs- und Wärmetransportprozesse entwickelt. Das Modell ist in der Lage, alle relevanten Einflussfaktoren zu berücksichtigen. Neben den Temperaturfeldern im Untergrund und der Erdwärmesonde werden die Effizienz und damit der Stromverbrauch der Wärmepumpe simuliert. Damit können sowohl die Betriebskosten als auch der äquivalente CO 2 -Ausstoß abgeschätzt werden. Das Modell wurde validiert und in einer Reihe numerischer Studien eingesetzt. Zuerst wurde eine umfassende Sensitivitätsanalyse zur Effizienz und Nachhaltigkeit entsprechender Anlagen durchgeführt. Weiterhin wird ein Verfahren zur Quantifizierung des technisch nutzbaren, oberflächennahen geothermischen Potentials vorgestellt und anhand einer Fallstudie für die Stadt Köln demonstriert, gefolgt von einer Diskussion der Ergebnisse.
60

Improvements of U-pipe Borehole Heat Exchangers

Acuña, José January 2010 (has links)
The sales of Ground Source Heat Pumps in Sweden and many other countries are having a rapid growth in the last decade. Today, there are approximately 360 000 systems installed in Sweden, with a growing rate of about 30 000 installations per year. The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a Borehole Heat Exchanger (BHE), a closed loop in a vertical borehole. The fluid transports the heat from the ground to a certain heating and/or cooling application. A fluid with one degree higher or lower temperature coming out from the borehole may represent a 2-3% change in the COP of a heat pump system. It is therefore of great relevance to design cost effective and easy to install borehole heat exchangers. U-pipe BHEs consisting of two equal cylindrical pipes connected together at the borehole bottom have dominated the market for several years in spite of their relatively poor thermal performance and, still, there exist many uncertainties about how to optimize them. Although more efficient BHEs have been discussed for many years, the introduction of new designs has been practically lacking. However, the interest for innovation within this field is increasing nowadays and more effective methods for injecting or extracting heat into/from the ground (better BHEs) with smaller temperature differences between the heat secondary fluid and the surrounding bedrock must be suggested for introduction into the market. This report presents the analysis of several groundwater filled borehole heat exchangers, including standard and alternative U-pipe configurations (e.g. with spacers, grooves), as well as two coaxial designs. The study embraces measurements of borehole deviation, ground water flow, undisturbed ground temperature profile, secondary fluid and groundwater temperature variations in time, theoretical analyses with a FEM software, Distributed Thermal Response Test (DTRT), and pressure drop. Significant attention is devoted to distributed temperature measurements using optic fiber cables along the BHEs during heat extraction and heat injection from and to the ground. / <p>QC 20100517</p> / EFFSYS2 / Efficient Use of Energy Wells for Heat Pumps

Page generated in 0.0624 seconds