• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-unique Product Groups on Two Generators

Carter, William Paul 23 May 2007 (has links)
The main purpose of this paper is to better understand groups that do not have the unique product property. In particular, the goal is to better understand Promislow's example, G, of such a group. In doing so, we will develop methods for generating examples of other sets that do not have the unique product property. With these methods we can show that there exists other distinct 14 element, square, non-unique product sets in G that are not inversions or translations. Also, this paper answers the question as to whether every non-unique product set can have only 14 elements in the negative by producing a 17 element square n.u.p. set. The secondary purpose of this paper is to demonstrate that in the group ring K[G], there are no units of support size 3. / Master of Science
2

Unidades Hipercentrais em Anéis de Grupo. / Hypercentral units in group rings

Iwaki, Edson Ryoji Okamoto 05 June 2000 (has links)
Grande parte dos problemas em Anéis de Grupo centraliza-se em torno do estudo do seu grupo de unidades. Torna-se importante então conhecermos a estrutura do grupo de unidades de um anel de grupo U(ZG). No entanto, salvo raras exceções, pouco se conhece acerca da estrutura de U(ZG). Uma das idéias para se conhecer um pouco mais sobre a estrutura do grupo de unidades seria estudarmos a sua série central superior. No caso em que o grupo G é finito, um resultado de Gruenberg pode ser usado para mostrar que a série central superior de U = U(ZG) estaciona. Este fato nos possibilita estudarmos o hipercentro de U(ZG). A fim de obter mais informações sobre as unidades hipercentrais de U(ZG), nós necessitamos de uma descrição dos subgrupos de torção do hipercentro de U(ZG), o qual obtemos através dos resultados de Bovdi sobre os subgrupos normais periódicos de U(ZG). De modo geral, utilizando os resultados de Bovdi obtemos uma classificação dos grupos periódicos G em função do subgrupo dos elementos % de torção do hipercentro de U(ZG). Neste momento, surgem algumas perguntas, as quais procuraremos expor neste trabalho. Entre elas: O limitante superior para a série central superior de U(ZG) depende do grupo G? Como determinar a altura central superior de U(ZG)? Neste momento é interessante salientarmos como a Conjectura do Normalizador nos possibilita obtermos uma estimativa para a altura central de U(ZG). Todas estas perguntas são respondidas no capítulo 4, como resultado dos trabalhos de Arora, Hales, Passi que nos garantem que neste caso a altura central de U(ZG) é no máximo 2. Embora a demonstração original deste fato, devido a Arora, Hales e Passi, não tenha utilizado a Conjectura do Normalizador, tomamos neste trabalho a idéia de supormos um provável caminho que levasse a este resultado obtendo estimativas para a altura central de U(ZG) utilizando a Conjectura do Normalizador e um teorema de Gross. Nosso intuito com isso foi o de conectarmos a resolução do problema em questão com um problema de pesquisa intensa atual na área, ou seja, a Conjectura do Normalizador. Nesse caso, surge mais uma pergunta: Quais os grupos G tais que U(ZG) admite altura central exatamente 0, 1 ou 2? Pergunta que é respondida por Arora, Hales e Passi também. Finalmente, mais um resultado de Arora, Hales e Passi nos mostram uma caracterização do hipercentro de U(ZG) que surpreendentemente bate com a estimativa dada pela Conjectura do Normalizador. É interessante notar aqui o aparecimento da Conjectura do Normalizador tanto para obtermos uma estimativa da altura central de U(ZG) como na caracterização do hipercentro de U(ZG). No capítulo 5 apresentamos a generalização dos resultados de Arora, Hales e Passi para o caso em que o grupo G é periódico, cujos resultados se devem basicamente a Y.Li. No caso em que o grupo G é periódico, Li mostrou que a altura central de U(ZG) é no máximo 2. E introduzindo o conceito de n-centro de um grupo, obtém-se uma caracterização do n-centro de U(ZG) em função dos resultados sobre o hipercentro do grupo de unidades. / A great deal of problems in Group Rings centralize around the study of its group of units. Hence it becomes important to know the structure of the group of units U(ZG). But with a few exceptions, we do not have much information about its structure. Trying to obtain more information about the structure of U(ZG), we could, for example, study the upper central series of U(ZG). In case G is finite, a result of Gruenberg implies that U(ZG) has finite central height. This fact allow us to study the hypercenter of U(ZG). In order to obtain more information about the hypercentral units of U(ZG) we need a description of the torsion subgroup of the hypercenter of U(ZG) which is provided by results of Bovdi on periodic normal subgroups of U(ZG). Gruenberg\'s result suscites some questions which we will try to answer in this work. Among them: The upper bound for the upper central serie of U(ZG) depends on of the group G? How could we determine the central height of U(ZG)? It is interesting to see how we could obtain an estimative for the central height of U(ZG) using the Normalizer Conjecture. All these questions are answered in chapter 4, as a consequence of Arora, Hales and Passi\'s work which guarantees us that in this case the central height of U(ZG) is at most 2. Nevertheless this result of Arora, Hales and Passi doesn\'t use the Normalizer Conjecture, we suppose here that the Normalizer Conjecture holds and used a result of Gross to obtain estimatives to the central height of U(ZG). Our aim was to connect the question discussed ahead with a intensive research problem, the Normalizer Conjecture. This arises the following question: For which groups does U(ZG) have central height exactly 0, 1 or 2? This question is also answered by Arora, Hales and Passi. Finally, another result of Arora, Hales and Passi present us a characterization of the hypercenter of U(ZG), which surprisingly satisfies the condition presented in the Normalizer Conjecture. It is interesting to observe here the appearing of Normalizer Conjecture to obtain an estimative for the central height of U(ZG) and to obtain a characterization of the hypercenter of U(ZG). In chapter 5 we present a result of Li which generalizes the result of Arora, Hales and Passi to the case when G is a periodic group. He proves that the central height of U(ZG) is also at most 2. Introducing the concept of n-center he was able to use the results about the hypercenter of U(ZG) to obtain a characterization of the n-center of U(ZG).
3

Unidades Hipercentrais em Anéis de Grupo. / Hypercentral units in group rings

Edson Ryoji Okamoto Iwaki 05 June 2000 (has links)
Grande parte dos problemas em Anéis de Grupo centraliza-se em torno do estudo do seu grupo de unidades. Torna-se importante então conhecermos a estrutura do grupo de unidades de um anel de grupo U(ZG). No entanto, salvo raras exceções, pouco se conhece acerca da estrutura de U(ZG). Uma das idéias para se conhecer um pouco mais sobre a estrutura do grupo de unidades seria estudarmos a sua série central superior. No caso em que o grupo G é finito, um resultado de Gruenberg pode ser usado para mostrar que a série central superior de U = U(ZG) estaciona. Este fato nos possibilita estudarmos o hipercentro de U(ZG). A fim de obter mais informações sobre as unidades hipercentrais de U(ZG), nós necessitamos de uma descrição dos subgrupos de torção do hipercentro de U(ZG), o qual obtemos através dos resultados de Bovdi sobre os subgrupos normais periódicos de U(ZG). De modo geral, utilizando os resultados de Bovdi obtemos uma classificação dos grupos periódicos G em função do subgrupo dos elementos % de torção do hipercentro de U(ZG). Neste momento, surgem algumas perguntas, as quais procuraremos expor neste trabalho. Entre elas: O limitante superior para a série central superior de U(ZG) depende do grupo G? Como determinar a altura central superior de U(ZG)? Neste momento é interessante salientarmos como a Conjectura do Normalizador nos possibilita obtermos uma estimativa para a altura central de U(ZG). Todas estas perguntas são respondidas no capítulo 4, como resultado dos trabalhos de Arora, Hales, Passi que nos garantem que neste caso a altura central de U(ZG) é no máximo 2. Embora a demonstração original deste fato, devido a Arora, Hales e Passi, não tenha utilizado a Conjectura do Normalizador, tomamos neste trabalho a idéia de supormos um provável caminho que levasse a este resultado obtendo estimativas para a altura central de U(ZG) utilizando a Conjectura do Normalizador e um teorema de Gross. Nosso intuito com isso foi o de conectarmos a resolução do problema em questão com um problema de pesquisa intensa atual na área, ou seja, a Conjectura do Normalizador. Nesse caso, surge mais uma pergunta: Quais os grupos G tais que U(ZG) admite altura central exatamente 0, 1 ou 2? Pergunta que é respondida por Arora, Hales e Passi também. Finalmente, mais um resultado de Arora, Hales e Passi nos mostram uma caracterização do hipercentro de U(ZG) que surpreendentemente bate com a estimativa dada pela Conjectura do Normalizador. É interessante notar aqui o aparecimento da Conjectura do Normalizador tanto para obtermos uma estimativa da altura central de U(ZG) como na caracterização do hipercentro de U(ZG). No capítulo 5 apresentamos a generalização dos resultados de Arora, Hales e Passi para o caso em que o grupo G é periódico, cujos resultados se devem basicamente a Y.Li. No caso em que o grupo G é periódico, Li mostrou que a altura central de U(ZG) é no máximo 2. E introduzindo o conceito de n-centro de um grupo, obtém-se uma caracterização do n-centro de U(ZG) em função dos resultados sobre o hipercentro do grupo de unidades. / A great deal of problems in Group Rings centralize around the study of its group of units. Hence it becomes important to know the structure of the group of units U(ZG). But with a few exceptions, we do not have much information about its structure. Trying to obtain more information about the structure of U(ZG), we could, for example, study the upper central series of U(ZG). In case G is finite, a result of Gruenberg implies that U(ZG) has finite central height. This fact allow us to study the hypercenter of U(ZG). In order to obtain more information about the hypercentral units of U(ZG) we need a description of the torsion subgroup of the hypercenter of U(ZG) which is provided by results of Bovdi on periodic normal subgroups of U(ZG). Gruenberg\'s result suscites some questions which we will try to answer in this work. Among them: The upper bound for the upper central serie of U(ZG) depends on of the group G? How could we determine the central height of U(ZG)? It is interesting to see how we could obtain an estimative for the central height of U(ZG) using the Normalizer Conjecture. All these questions are answered in chapter 4, as a consequence of Arora, Hales and Passi\'s work which guarantees us that in this case the central height of U(ZG) is at most 2. Nevertheless this result of Arora, Hales and Passi doesn\'t use the Normalizer Conjecture, we suppose here that the Normalizer Conjecture holds and used a result of Gross to obtain estimatives to the central height of U(ZG). Our aim was to connect the question discussed ahead with a intensive research problem, the Normalizer Conjecture. This arises the following question: For which groups does U(ZG) have central height exactly 0, 1 or 2? This question is also answered by Arora, Hales and Passi. Finally, another result of Arora, Hales and Passi present us a characterization of the hypercenter of U(ZG), which surprisingly satisfies the condition presented in the Normalizer Conjecture. It is interesting to observe here the appearing of Normalizer Conjecture to obtain an estimative for the central height of U(ZG) and to obtain a characterization of the hypercenter of U(ZG). In chapter 5 we present a result of Li which generalizes the result of Arora, Hales and Passi to the case when G is a periodic group. He proves that the central height of U(ZG) is also at most 2. Introducing the concept of n-center he was able to use the results about the hypercenter of U(ZG) to obtain a characterization of the n-center of U(ZG).
4

On an analogue of L2-Betti numbers for finite field coefficients and a question of Atiyah

Neumann, Johannes 06 July 2016 (has links)
No description available.
5

Sobre códigos cíclicos e abelianos / On cyclic codes and abelian codes

Melo, Fernanda Diniz de 19 March 2012 (has links)
Neste trabalho calculamos o peso e a dimensão de todos os códigos cíclicos de comprimento pn na álgebra de grupo FqCpn, onde p é um número primo e Fq é um corpo finito de característica q. Também calculamos o peso do código dado pela soma de dois códigos abelianos minimais em Fq(Cp × Cp), dessa forma foi possível fazer uma breve comparação entre códigos cíclicos e abelianos não cíclicos de comprimento p2. / In this work we compute the weight and the dimension of all cyclic codes of length pn in the group algebra FqCpn, where p is a prime number and Fq is a finite field of characteristic q. Furthermore, we compute the weight of codes which are given by the sum of two minimal abelian codes in Fq(Cp × Cp). In this way, it was possible to compare briefly cyclic codes and non-cyclic abelian codes of length p2.
6

Algebraic and Combinatorial Properties of Schur Rings over Cyclic Groups

Misseldine, Andrew F. 01 May 2014 (has links)
In this dissertation, we explore the nature of Schur rings over finite cyclic groups, both algebraically and combinatorially. We provide a survey of many fundamental properties and constructions of Schur rings over arbitrary finite groups. After specializing to the case of cyclic groups, we provide an extensive treatment of the idempotents of Schur rings and a description for the complete set of primitive idempotents. We also use Galois theory to provide a classification theorem of Schur rings over cyclic groups similar to a theorem of Leung and Man and use this classification to provide a formula for the number of Schur rings over cyclic p-groups.
7

Propriétés algébriques d'une algèbre de convolution

Magnifo Kahou, Florence Laure January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
8

Propriétés algébriques d'une algèbre de convolution

Magnifo Kahou, Florence Laure January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
9

Sobre uma classificação dos anéis de inteiros, dos semigrupos finitos e dos RA-loops com a propriedade hiperbólica / On a classification of the integral rings, finite semigroups and RA-loops with the hyperbolic property

Souza Filho, Antonio Calixto de 16 November 2006 (has links)
Apresentamos duas construções para unidades de uma ordem em uma classe de álgebras de quatérnios que é anel de divisão: as unidades de Pell e as unidades de Gauss. Classificamos os anéis de inteiros de extensões quadráticas racionais, $R$, cujo grupo de unidades $\\U (R G)$ é hiperbólico para um certo grupo $G$ fixado. Também classificamos os semigrupos finitos $S$, tal que, para a álgebra unitária $\\Q S$ e para toda $\\Z$-ordem $\\Gamma$ de $\\Q S$, o grupo de unidades $\\U (\\Gamma)$ é hiperbólico. Nesse mesmo contexto, classificamos os {\\it RA}-loops $L$ cujo loop de unidades $\\U (\\Z L)$ não contém um subgrupo abeliano livre de posto dois. / For a given division algebra of a quaternion algebra, we construct and define two types of units of its $\\Z$-orders: Pell units and Gauss units. Also, for the quadratic imaginary extensions over the racionals and some fixed group $G$, we classify the algebraic integral rings for which the unit group ring is a hyperbolic group. We also classify the finite semigroups $S$, for which all integral orders $\\Gamma$ of $\\Q S$ have hyperbolic unit group $\\U(\\Gamma)$. We conclude with the classification of the $RA$-loops $L$ for which the unit loop of its integral loop ring does not contain a free abelian subgroup of rank two.
10

Sobre uma classificação dos anéis de inteiros, dos semigrupos finitos e dos RA-loops com a propriedade hiperbólica / On a classification of the integral rings, finite semigroups and RA-loops with the hyperbolic property

Antonio Calixto de Souza Filho 16 November 2006 (has links)
Apresentamos duas construções para unidades de uma ordem em uma classe de álgebras de quatérnios que é anel de divisão: as unidades de Pell e as unidades de Gauss. Classificamos os anéis de inteiros de extensões quadráticas racionais, $R$, cujo grupo de unidades $\\U (R G)$ é hiperbólico para um certo grupo $G$ fixado. Também classificamos os semigrupos finitos $S$, tal que, para a álgebra unitária $\\Q S$ e para toda $\\Z$-ordem $\\Gamma$ de $\\Q S$, o grupo de unidades $\\U (\\Gamma)$ é hiperbólico. Nesse mesmo contexto, classificamos os {\\it RA}-loops $L$ cujo loop de unidades $\\U (\\Z L)$ não contém um subgrupo abeliano livre de posto dois. / For a given division algebra of a quaternion algebra, we construct and define two types of units of its $\\Z$-orders: Pell units and Gauss units. Also, for the quadratic imaginary extensions over the racionals and some fixed group $G$, we classify the algebraic integral rings for which the unit group ring is a hyperbolic group. We also classify the finite semigroups $S$, for which all integral orders $\\Gamma$ of $\\Q S$ have hyperbolic unit group $\\U(\\Gamma)$. We conclude with the classification of the $RA$-loops $L$ for which the unit loop of its integral loop ring does not contain a free abelian subgroup of rank two.

Page generated in 0.0468 seconds