351 |
The Role of Alternative Epidermal Growth Factor Receptor Trafficking in Driving Cancer ProgressionMaisel, Sabrina, Maisel, Sabrina January 2017 (has links)
The Epidermal Growth Factor Receptor (EGFR) is associated with a variety of cancers, including brain, lung, cervix, renal and breast. It is part of a family of receptors known as the ErbB receptors (ErbB1/EGFR, ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4), transmembrane proteins found on epithelial cells responsible for a multitude of signaling events. In cancers, EGFR is frequently mutated or improperly expressed, upregulated in more than 50 percent of basal-like cancers. Mutations commonly promote constitutive activation or increase receptor recycling. In basal-like breast cancers such as triple negative breast cancer (TNBC), named for the lack of hormone receptors (estrogen and progesterone) and the HER2 receptor, EGFR is highly upregulated and associated with a variety of oncogenic activity, including increased proliferation and migration, and inhibition of cell death. Changes in these pathways are predicated on altered trafficking and activation of EGFR, events driven by variation in stimuli and interacting partners, such as other ErbB family members or oncogenic adaptor proteins such as MUC1, a member of the mucin family.
In TNBC, upon stimulus with epidermal growth factor (EGF), EGFR colocalizes with MUC1 in intracellular vesicles distributed throughout the cytoplasm. These intracellular vesicles are associated with early endosomes, as indicated by the presence of early endosome antigen 1 (EEA1). Association with MUC1 prolongs the presence of EGFR in these vesicles, as EGFR's stay is significantly reduced in cells lacking MUC1. Retention in these vesicles by MUC1 inhibits trafficking of EGFR to the lysosome for degradation and is also associated with an increase in EGF-dependent migratory ability. Introduction of late endosome inhibitors (thereby preventing lysosomal targeting) increases migration in the absence of MUC1, the same effect as in the presence of MUC1. Further, inhibition of retrograde trafficking significantly decreases the rate of migration and changes cellular distribution of filopodia corresponding to migratory ability in MUC1-containing cells. Taken together, these data indicate that MUC1 is responsible for altering EGFR trafficking by retaining EGFR in EEA1-positive vesicles for prolonged periods, allowing for increased signal transduction through retrograde trafficking of EGFR and structural reorganization promoting a migratory phenotype.
Loss of the polarity protein Llgl1 is associated with alterations in EGFR trafficking, promoting highly diffuse EGFR distribution throughout the cytoplasm versus along basolateral membranes. These changes in trafficking are also associated with increases in AKT and dual-phosphorylated-ERK signal transduction, both downstream targets of activated EGFR. Altering localization of EGFR to other membranes and intracellular vesicles without inducing polarity loss through a point mutation at amino acid 667 was found to also upregulate the AKT pathway. Mislocalization driven by polarity loss or point mutation in the basolateral targeting domain is sufficient to increase migration speeds of non-cancerous epithelial cell lines in vitro. This increased oncogenic activity is likely attributed to increased nuclear localization of the transcription factor TAZ (transcription co-activator with a PDZ-binding domain), whose nuclear translocation is associated with increased stem-like properties such as migration and survival.
Together, these data reveal the oncogenic potential caused by alterations in EGFR trafficking that occur when polarity is lost or EGFR is improperly associated with proteins that promote changes to canonical EGFR localization and degradation, such as MUC1.
|
352 |
Determination of the structural requirements for modification of vascular endothelial growth factor angiogenic activity by heparan sulfate oligosaccharidesHamilton, Andrew January 2012 (has links)
Clinical manipulation of angiogenesis (the formation of new blood vessels from pre-existing vasculature) is of interest to treat diseases such as cancer and ischemic tissue where it is not properly regulated. Several treatments targeting vascular endothelial growth factor (VEGF) and its receptors - which are abundant at sites of angiogenesis - are currently in use to treat various types of cancer, however they have severe vascular side effects. Conversely, VEGF has been used clinically to promote angiogenesis to treat ischemic tissue. However, despite encouraging data from pre-clinical models, trials in humans have been disappointing. For further therapies to be developed, more information on how VEGF interacts with its receptors is required. Heparan sulfate (HS) is a ubiquitous glycosaminoglycan involved in a number of physiological processes including angiogenesis. HS facilitates the interaction of VEGF with its receptors, which is crucial for angiogenesis. Modification of this interaction via synthetic mimetics of HS may allow clinical intervention of angiogenesis. The current investigation aims first, to clarify the requirement for the interaction between VEGF and HS in angiogenesis; second to characterise the structure of HS that binds to VEGF so that mimetics can be developed; and third, to determine the effect of HS mimetics on angiogenesis in vivo. To determine the requirement for VEGF/HS interaction in angiogenesis, several mutants of VEGF165 that had lower affinities for HS were assayed for their ability to induce ectopic angiogenesis in the subintestinal baskets of zebrafish embryos. Wild type VEGF165 induced a 200-250% increase in ectopic vessels, which was matched only by a control mutant. Other mutants did not induce ectopic vessels, suggesting that this interaction is required for angiogenesis. To characterise the structure of HS that binds to VEGF, various HS mimetics were assayed against heparin in a VEGF competition assay using Biacore. Of these, the strongest inhibition (IC¬50 =~16nM) was with 2O10, an oligosaccharide that consisted of two highly sulfated octasaccharide domains (NS domains) that flanked an unsulfated dodecasaccharide region. To determine the type of sulfation required for this interaction, HS fragments were assayed for interaction with VEGF165 using the filter binding assay, and analysed by HPLC which indicated 6-O sulfation may be preferential for VEGF binding to HS.To investigate the ability of HS to affect angiogenesis, the effects of HS mimetics on zebrafish embryo subintestinal baskets were measured. The most interesting of these was with 2O10, which had a biphasic response whereby low doses (3ng) increased basket vasculature by 30% and high doses (30ng) decreased the endogenous vessels by 20%. As 2O10 had a high affinity for VEGF, its effects on the vasculature may be due to interaction with endogenous VEGF, which would indicate that HS mimetics can be used to control angiogenesis by modification of growth factor signalling. The investigation concludes that the interaction between VEGF and HS is critical for angiogenesis, and that this can be modulated by the application of HS mimetics that bind strongly to VEGF.
|
353 |
CD74 is a novel gene which facilitates resistance of tumors to current EGFR tyrosine kinase inhibitor therapy in non-small cell lung cancer patientsPlotnick, David O. 06 December 2021 (has links)
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are highly effective therapies for sub-populations of non-small cell lung cancers. Specific mutations have been identified in the EGFR gene such as L858R which overstimulate cell pathways that lead to tumor growth. All tumors eventually develop resistance to this treatment, rendering them useless, and tumor growth progresses. Escape mutations in the EGFR gene were first seen in patients undergoing treatment with first-generation TKI erlotinib and gefitinib. T790M is a widely seen gate-keeping mutation which overcomes inhibition from erlotinib and gefitinib. Third-generation irreversible TKI, osimertinib, can inhibit tumor cells with this gate-keeping mutation thus overcoming a major hurdle in containment of tumor growth. Unfortunately, patients eventually develop resistance to osimertinib, exhausting options for managing non-small cell lung cancer. Here we analyzed H1975 cells which harbor L858R + T790M mutations. We aimed to track genomic, transcriptomic, and proteomic changes to uncover mechanisms cells use to develop resistance to osimertinib.
We established cell colonies which were able to survive high dose treatment up to 2 µM osimertinib. We also saved cells with IC50 of 30 nM to represent drug-tolerant cells. We conducted single-cell sequencing of mRNA transcription and performed hierarchal gene analysis which identified CD74 as a novel factor which was upregulated in drug-tolerant cells. Further we showed CD74 gene was accessible as open chromatin for easy upregulation. Western blot analysis showed increased expression of CD74 after 24 hours of osimertinib treatment. Using siRNA in H1975 cells, we conducted knockdown experiments of CD74 during osimertinib treatment and showed reduced viability. Next, H1975 cells lines were engineered with deletions in CD74 to knockout its expression. These cells also showed reduced viability in the presence of osimertinib. Quantification of apoptosis using caspase-glo assays showed greater activation of apoptosis in cell populations without CD74 compared to normal H1975 cells. H1975-CD74 knockout cells also took longer to become resistant to osimertinib when compared with control. These results show the role of CD74 in helping tumor cells survive EGFR TKI treatment. / 2023-12-05T00:00:00Z
|
354 |
Dialogue entre les molécules d'adhérence et le récepteur à l'IGF-I lors de la progression des mélanomesSiret, Carole 16 December 2011 (has links)
Le mélanome est un cancer en recrudescence depuis 10 ans. Il est devenu de ce fait une préoccupation majeure de santé publique. Au cours de la progression tumorale, l’expression des molécules d’adhérence (intégrines et cadhérines) ainsi que le récepteur à l’IGF de type I (IGF-IR) sont modulées. Notamment, il est observé un « switch des cadhérines » de la E vers la N, une surexpression des intégrines α2 et αv, et de l’IGF-IR. C’est dans cette optique que nous nous sommes intéressés aux dialogues croisés entre les molécules d’adhérence et l’IGF-IR. Dans un premier temps, nous avons mis en évidence un dialogue entre la N-cadhérine et l’intégrine αv lors de la migration des mélanomes. Dans un second temps, nous avons démontré que les dialogues entre l’IGF-IR, l’intégrine α2 et les cadhérines différent selon la nature de la cadhérine incriminée. Ces modifications de dialogues ont un impact important sur la propension migratoire des mélanomes. / Cutaneous malignant melanoma is an aggressive melanocyte malignancy that is characterized by early metastasis, bad prognosis, and poor survival. Altered cell-cell adhesion (cadherins), cell-extracellular matrix (integrins) interaction, and IGF type I receptor (IGF-IR) are playing an important role in melanoma progression. In particular, we observed a "cadherins switch" from E to N, and α2- αv-integrins and IGF-IR over-expression. In this optics, we were interested in the crosstalk between adhesion molecules and IGF-IR. First, we brought to light a crosstalk between N-cadherin and αv-integrin during melanoma migration. Secondly, we demonstrated that the dialogues between the IGF-IR, α2-integrin and cadherins are different according to the nature of the cadherin involved. Such modulation in the crosstalk may have an important impact on the migratory inclination of melanomas.
|
355 |
Alcohol Inhibits Epidermal Growth Factor‐Stimulated Progesterone Secretion from Human Granulosa CellsMcKenzie, Pamela P., McClaran, Joseph D., Caudle, Michael R., Fukuda, Aisaku, Wimalasena, Jay 01 January 1995 (has links)
In this study, luteinized human granulosa cells (GC) obtained during in vitro fertilization procedures were used as a model system to evaluate the effects of ethanol (EtOH), a well‐known reproductive toxin, on epidermal growth factor (EGF) and gonadotropin‐stimulated steroidogenesis. Our results demonstrate that the basal progesterone (P4) and estradiol (E2) secretion by human GC in vitro was dependent on the ovarian stimulation protocol. EGF significantly enhanced P4, but not E2, secretion in human GC from clomiphene citrate (CC), human menopausal gonadotropin (hMG), and hMG/gonadotropin‐releasing hormone agonist (GnRH‐a)‐treated patients. The effects of EGF plus luteinizing hormone (LH) were additive in cells from the CC group, but less than additive in hMG and hMG/GnRH‐a groups. EtOH at 20 mM or more inhibited EGF stimulated P4 secretion in human GC from all three patient groups. EtOH inhibited P4 secretion stimulated by EGF and LH cotreatment in the CC and hMG/GnRH‐a groups, but not in human GC from the hMG‐treated patients. These results suggest that basal and EGF or LH‐stimulated P4 secretion by human GC, as well as the effects of EtOH, are profoundly influenced by the follicle's hormonal milieu.
|
356 |
Activation of the Intracellular Renin-Angiotensin System in Cardiac Fibroblasts by High Glucose: Role in Extracellular Matrix ProductionSingh, Vivek, Baker, Kenneth M., Kumar, Rajesh 01 April 2008 (has links)
The occurrence of a functional intracellular renin-angiotensin system (RAS) has emerged as a new paradigm. Recently, we and others demonstrated intracellular synthesis of ANG II in cardiac myocytes and vascular smooth muscle cells that was dramatically stimulated in high glucose conditions. Cardiac fibroblasts significantly contribute to diabetes-induced diastolic dysfunction. The objective of the present study was to determine the existence of the intracellular RAS in cardiac fibroblasts and its role in extracellular matrix deposition. Neonatal rat ventricular fibroblasts were serum starved and exposed to isoproterenol or high glucose in the absence or presence of candesartan, which was used to prevent receptor-mediated uptake of ANG II. Under these conditions, an increase in ANG II levels in the cell lysate represented intracellular synthesis. Both isoproterenol and high glucose significantly increased intracellular ANG II levels. Confocal microscopy revealed perinuclear and nuclear distribution of intracellular ANG II. Consistent with intracellular synthesis, Western analysis showed increased intracellular levels of renin following stimulation with isoproterenol and high glucose. ANG II synthesis was catalyzed by renin and angiotensin-converting enzyme (ACE), but not chymase, as determined using specific inhibitors. High glucose resulted in increased transforming growth factor-β and collagen-1 synthesis by cardiac fibroblasts that was partially inhibited by candesartan but completely prevented by renin and ACE inhibitors. In conclusion, cardiac fibroblasts contain a functional intracellular RAS that participates in extracellular matrix formation in high glucose conditions, an observation that may be helpful in developing an appropriate therapeutic strategy in diabetic conditions.
|
357 |
Fibroblast Growth Factor Receptor (FGFR) Inhibitors: A Review of a Novel Therapeutic ClassWeaver, April, Bossaer, John B. 01 April 2021 (has links)
Comprehensive genomic profiling has an emerging role in cancer therapeutics. As treatment options remain needed for advanced cancers, patients are relying increasingly more on tumor genomic alterations as possible targets for cancer treatment. Frequent tumor fibroblast growth factor receptor (FGFR) alterations are seen in many cancers, and include genetic amplifications, mutations, rearrangements and fusions. FGFR inhibitors target these receptor alterations and show promise as a drug class. Currently 2 medications are currently FDA approved: erdafitinib and pemigatinib. Through the FDA accelerated approval process, erdafitinib is indicated to treat metastatic urothelial carcinoma with FGFR2 and FGFR3 alterations, whereas pemigatinib is indicated to treat unresectable cholangiocarcinoma with FGFR2 alterations. Despite growing knowledge about such advanced cancers, treatment is usually palliative. With multiple FGFR inhibitors in the pipeline, further FDA approvals are possible, and it is likely their role in therapy will extend to other cancer types. This review outlines erdafitinib, pemigatinib, their role in cancer, as well as outlining the possible future use of other FGFR inhibitors in urothelial carcinoma, cholangiocarcinoma, and other malignancies.
|
358 |
The role of adaptor proteins Crk and CrkL in lens developmentCollins, Tamica N. 04 May 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cell shape changes and signaling pathways are essential for the development and function
of the lens. During lens development proliferating epithelial cells will migrate down to the
equator of the lens, differentiate into lens fiber cells, and begin to elongate along the lens
capsule. The Fibroblast Growth Factor (FGF) signaling pathway has been extensively
studied for its role in lens fiber cell differentiation and elongation. However, the main
mediators of FGF stimulated lens fiber cell elongation have not been identified. Adaptor
proteins Crk and CrkL are SH2- and SH3-containing proteins that transduce signals from
upstream tyrosine phosphorylated proteins to downstream effectors, including Ras, Rac1
and Rap1, which are important for cell proliferation, adhesion and migration. Underlying
their diverse function, these two adaptor proteins have been implicated in receptor tyrosine
kinase signaling, focal adhesion assembly, and cell shape. To explore the role of Crk and
CrkL in FGF signaling-dependent lens development and fiber elongation, we employed
Cre/LoxP system to generate a lens specific knockout of Crk/CrkL. This led to extracellular
matrix defects, disorganization of the lens fiber cells, and a defect in lens fiber cell
elongation. Deletion of Crk and CrkL in the lens also mitigated the gain-of-function
phenotype caused by overexpression of FGF3, indicating an epistatic relationship between
Crk/CrkL and FGF signaling during lens fiber cell elongation. Further studies, revealed
that the activity of Crk and CrkL in FGF signaling is controlled by the phosphatase Shp2
and the defect observed in lens fiber cell elongation can be rescued by constitutive
activation of the GTPases Ras and Rac1 in the Crk and CrkL mutant lens. Interestingly,
the deletion of the GTPases Rap1 in the lens showed no obvious phenotype pertaining to lens fiber cell elongation. These findings suggest that Crk and CrkL play an important role
in integrating FGF signaling and mediating lens fiber cell elongation during lens
development.
|
359 |
Testing bone cell models responsive to a soluble form of klothoBonfitto, Anna 11 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fibroblast growth factor-23 (FGF23) is a hormone produced in bone that acts upon the kidney to control blood phosphate and 1,25-(OH)2 vitamin D concentrations. Chronic kidney disease-mineral bone disorder (CKD-MBD) is a major public health problem, affecting 1 in 8 individuals. These patients can have markedly elevated FGF23 at end stage disease which is associated with metabolic bone anomalies, left ventricular hypertrophy, as well as increased mortality (>6-fold). The FGF23 co-receptor αKlotho (αKL) is a membrane-bound protein (mKL) that forms heteromeric complexes with FGF receptors (FGFRs) to initiate intracellular signaling. It also circulates as a cleavage product of mKL (‘cleaved’, or cKL). Previously, a patient with increased plasma cKL from a balanced translocation between chromosomes 9 and 13 in the KLOTHO gene presented with metabolic bone disease and a complex endocrine profile, despite hypophosphatemia. The lack of a reliable cell model in which to study potential FGF23-cKL interactions is a major hurdle for the field of phosphate metabolism. The goal of the present studies was to test and characterize bone cell lines that may respond to FGF23 and/or cKL, permitting study of novel aspects of phosphate handling and control of FGF23 expression. It was confirmed that stable delivery of cKL via AAV2/8 to wild type (WT) and KL-KO mice resulted in highly elevated bone FGF23 mRNA. MC3T3 (mouse) and ROS (rat) osteoblastic cell lines were tested for p-ERK1/2 responses to control FGFs, as well as FGF23 and cKL, alone or in combination. Importantly, both cell lines demonstrated responsiveness to FGF23+cKL only, and not the individual factors. To test responsiveness at the cell level, EGR1 mRNA was tested as an index of FGFR activity and showed modest increases with the same treatments, supporting that other factors may be required for full transcriptional effects. The present studies show that MC3T3 have FGF-dependent signaling capabilities, and that the combination of FGF23+cKL is required for efficient MAPK signaling. These results demonstrated that cKL provision is permissive for efficient FGF23 signaling in bone, and revealed important implications for the regulation of FGF23 and cKL in Mendelian, and common, genetic disorders of phosphate handling and biomineralization.
|
360 |
The role of mig6 in pancreas development and diabetesEl, Kimberley Mei Ling 14 August 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Diabetes occurs as a result of the failure of pancreatic insulin-producing β cells.
The preservation or renewal of β cells is a strategy that can prevent diabetes by targeted
manipulation of mechanisms associated with autoimmune β cell destruction or β cell
regeneration. ErbB signaling, specifically epidermal growth factor receptor (EGFR)
signaling, is associated with cell survival, growth, and proliferation. Thus, we
investigated the role of the ErbB inhibitor, mitogen-inducible gene 6 (mig6), in pancreas
development and in the progression to diabetes. Using morpholino knockdown in a
zebrafish model of development, we discovered that mig6 is required for the generation
of α and β cells as well as the formation of the exocrine pancreas. We suspect that the
loss of mig6 function causes premature differentiation of ductal progenitor cells, and acts
as a switch between progenitor differentiation and endocrine transdifferentiation.
Furthermore, we established a pancreas-specific mig6 knockout mouse that maintained
glucose tolerance and had a higher β cell mass after chemically-induced β cell injury by
way of increased β cell proliferation. Our data suggests that mig6 is required during
pancreas development and may be employed as a switch to direct the production of new β
cells, but that during adulthood, it is detrimental to the recovery of β cell mass, making it
a therapeutic target for β cell preservation after the onset of diabetes.
|
Page generated in 0.0469 seconds