11 |
Ionic, cellular and molecular mechanisms underlying the QT prolongation and arrhythmias in diabetic cardiocomplicationsZhang, Yiqiang January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
12 |
Pathomechanismen von HERG-Ionenkanal-Mutationen als Ursache von menschlichen RepolarisationsstoerungenBertrand, Jessica 11 January 2008 (has links)
Inherited long-QT syndrome is caused by mutations in HERG gene that are associated with distinct mechanisms of ion channel dysfunction (haploinsufficiency or IKr current suppression). Recently, mutations with a gain of HERG channel dysfunction were reported to cause ventricular fibrillation or short-QT syndrome. In the present work, we performed clinical characterization of arrhythmia patients, genotyping and biochemical analysis of HERG mutants in order to elucidate potential disease mechanisms. Using site-directed mutagenesis, 7 identified mutations were inserted into the WT-HERG cDNA. Western blot was used to analyze mutant HERG glycosylation patterns, immunostaining and confocal laser microscopy was performed to localize mutant proteins in different cell compartments. Heterologous expression in Xenopus oocytes was used to analyze IKr currents with the voltage clamp method. The cellular turnover of mutant HERG channels was assessed with pulse-chase experiments. Mutations in the cytoplasmic domains (PAS and cNBD) and in the voltage sensor are trafficking deficient and were identified in LQT2 patients. Three mutations in the N- and C-terminal linker regions undergo regular trafficking to the plasma membrane and were identified compound heterozygous with one of the other mutations in LQT2 patients or separate in patients with IVF. HERG-mutations are associated with various phenotypes like LQT2 and IVF. It seems that there is a direct correlation between the functionality of the protein region with the clinical and molecular biological phenotype. Mutations in functional regions like the PAS- and cNBD-domain lead to a trafficking defect of the mutant proteins and for that reason to a reduction of Ikr. Mutations in less functional regions like the N and C-terminal linker regions undergo normal trafficking and lead to IVF.
|
13 |
Endocytosis of hERG Is Clathrin-Independent and Involves Arf6Karnik, R., Ludlow, M.J., Abuarab, N., Smith, A.J., Hardy, Matthew E., Elliott, D.J.S., Sivaprasadarao, A. 31 December 2013 (has links)
Yes / The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. / British Heart Foundation (grant number PG/10/68/28528; http://www.bhf.org.uk)
|
14 |
Implication des interactions médicamenteuses, des transporteurs membranaires, du sexe et du diabète dans les mécanismes de survenue du syndrome du QT long médicamenteuxHreiche, Raymond January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
15 |
Implication des interactions médicamenteuses, des transporteurs membranaires, du sexe et du diabète dans les mécanismes de survenue du syndrome du QT long médicamenteuxHreiche, Raymond January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
16 |
Identification of the modulators of cardiac ion channel functionCarstens, Johanna J. 03 1900 (has links)
Thesis (MScMedSc (Biomedical Sciences. Molecular Biology and Human Genetics))--University of Stellenbosch, 2009. / The human ether-à-go-go-related gene (HERG) encodes the protein underlying the
cardiac potassium current IKr. Mutations in HERG may produce defective channels and
cause Long QT Syndrome (LQTS), a cardiac disease affecting 1 in 2500 people. The
disease is characterised by a prolonged QT interval on a surface electrocardiogram and
has a symptomatic variability of sudden cardiac death in childhood to asymptomatic
longevity. We hypothesised that genetic variation in the proteins that interact with HERG
might modify the clinical expression of LQTS. Yeast two-hybrid methodology was used
to screen a human cardiac cDNA library in order to identify putative HERG N-terminus
ligands. Successive selection stages reduced the number of putative HERG ligandcontaining
colonies (preys) from 268 to 8. Putative prey ligands were sequenced and
identified by BLAST-search. False positive ligands were excluded based on their
function and subcellular location. Three strong candidate ligands were identified: Rhoassociated
coiled-coil containing kinase 1 (ROCK1), γ-sarcoglycan (SGCG) and
microtubule-associated protein 1A (MAP1A). In vitro co-immunoprecipitation (Co-IP)
and mammalian two-hybrid (M2H) analyses were used to validate these proposed
interactions, but failed to do so. This should be further investigated. Analysis of
confirmed interactions will shed light on their functional role and might contribute to
understanding the symptomatic variability seen in LQTS.
|
17 |
Exploring Ligand Binding in HIV-1 Protease and K+ Channels Using Computational MethodsÖsterberg, Fredrik January 2005 (has links)
Understanding protein-ligand interactions is highly important in drug development. In the present work the objective is to comprehend the link between structure and function using molecular modelling. Specifically, this thesis has been focused on implementation of receptor flexibility in molecular docking and studying structure-activity relationships of potassium ion channels and their blockers. In ligand docking simulations protein motion and heterogeneity of structural waters are approximated using an ensemble of protein structures. Four methods of combining multiple target structures within a single grid-based lookup table of interaction energies are tested. Two weighted average methods permit consistent and accurate ligand docking using a single grid representation of the target protein structures. Quaternary ammonium ions (QAIs) are well known K+ channel blockers. Conformations around C–N bonds at the quaternary centre in tetraalkylammonium ions in water solution are investigated using quantum mechanical methods. Relative solvation free energies of QAIs are further estimated from molecular dynamics simulations. The torsion barrier for a two-step interconversion between the conformations D2d and S4 is calculated to be 9.5 kcal mol–1. Furthermore D2d is found to be more stable than the S4 conformation which is in agreement with experimental studies. External QAI binding to the K+ channel KcsA is also studied. Computer simulations and relative binding free energies of the KcsA complexes with QAIs are calculated. This is done with the molecular dynamics free energy perturbation approach together with automated ligand docking. In agreement with experiment, the Et4N+ blocker in D2d symmetry has better binding than the other QAIs. Binding of blockers to the human cardiac hERG potassium channel is studied using a combination of homology modelling, automated docking and molecular dynamics simulations. The calculations reproduce the relative binding affinities of a set of drug derivatives very well and indicate that both polar interactions near the intracellular opening of the selectivity filter as well as hydrophobic complementarity in the region around F656 are important for blocker binding. Hence, the derived model of hERG should be useful for further interpretations of structure-activity relationships.
|
18 |
Interaction of hERG Channels and Syntaxin 1AMihic, Anton 14 July 2009 (has links)
The human ether-à-go-go related gene (hERG) encodes the pore-forming voltage-gated K+ channel that is essential for cardiac repolarization. Dr. Tsushima’s laboratory has previously characterized the endogenous expression of SNARE proteins in the mammalian heart, and the interaction of the SNARE protein syntaxin 1A (STX1A) with several cardiac ion channels. Here, we utilize a multi-disciplinary approach to describe the inhibitory effect of STX1A on hERG channel function. STX1A impairs hERG channel maturation and trafficking to the plasma membrane and induces a hyperpolarizing shift in the voltage-sensitivity of steady-state inactivation. We identify the residues involved in this protein-protein interaction through the use of hERG truncation mutations. We also describe the pharmacological and temperature-mediated rescue of hERG channel trafficking in the presence of STX1A. The regulation of cardiac ion channels by SNARE proteins represents a novel biological mechanism that may have universally intrinsic implications for normal and diseased heart function.
|
19 |
Interaction of hERG Channels and Syntaxin 1AMihic, Anton 14 July 2009 (has links)
The human ether-à-go-go related gene (hERG) encodes the pore-forming voltage-gated K+ channel that is essential for cardiac repolarization. Dr. Tsushima’s laboratory has previously characterized the endogenous expression of SNARE proteins in the mammalian heart, and the interaction of the SNARE protein syntaxin 1A (STX1A) with several cardiac ion channels. Here, we utilize a multi-disciplinary approach to describe the inhibitory effect of STX1A on hERG channel function. STX1A impairs hERG channel maturation and trafficking to the plasma membrane and induces a hyperpolarizing shift in the voltage-sensitivity of steady-state inactivation. We identify the residues involved in this protein-protein interaction through the use of hERG truncation mutations. We also describe the pharmacological and temperature-mediated rescue of hERG channel trafficking in the presence of STX1A. The regulation of cardiac ion channels by SNARE proteins represents a novel biological mechanism that may have universally intrinsic implications for normal and diseased heart function.
|
20 |
CFTR Potentiator PG-01 and Corrector KM-11060 can rescue hERG mutations traffickingZhang, J., Shang, Lijun, Ma, A. January 2016 (has links)
Yes / Type II congenitalLong QT syndrome (LQT2) is due to genetic mutations in hERG channel. Genetic or
pharmacological factors could potentially affect hERG channel biogenesis and contributes to LQTS, for example,
disease mutations G601S and T473P result in hERG trafficking deficiency [1,2]. Various rescue strategies for hERG
dysfuction are being developed. Some correctors for CFTR channel have been reported to act indirectly on
proteostasis pathways to promote folding and correction on hERG trafficking deficiency [3]. In this study, we tested the
hypothesis that the CFTR corrector KM-11060 and the potentiator PG-01 may correct hERG mutation trafficking
diseases.
We use HEK293 cell line expressing a well-studied trafficking disease mutation G601S-hERG channel [4]. We treated
cells with CFTR potentiator PG-01and corrector KM-11060, which function through different cellular mechanisms, and
assessed whether correction occurred via immunoblotting. Whole cell proteins from HEK 293 cells expressing hERG
channels were used for analysis [5]. Proteins were separated on 8% SDS-polyacrylamide electrophoresis gels for 1
hour, transferred onto PVDF membrane, and blocked for 1 h with 5% nonfat milk. The blots were incubated with the
primary antibody (Santa Cruz Biotechnology) for 12-16 h at 4C temperature and then incubated with a donkey antigoat
horseradish peroxidase-conjugated secondary antibody( Santa Cruz Biotechnology). Actin expression was used
for loading controls. The blots were visualized using the ECL detection kit (Genshare).Results were deemed
significantly different from controls by a one-way ANOVA (p < 0.05).
Our results show that both KM-11060 (5, 10, 20uM) and PG-01(5, 15 uM) can correct G601S mutant alleles of hERG
protein trafficking (Fig 1, 2). KM-11060 (20uM) but not PG-01(15 uM) enhance protein expression of wild type hERG
channel (Fig 2). Further treatment on cells at low temperature with different drug concentration will be tested.
Functional studies are also needed to test whether the drugs can correct the function of hERG mutation channel.
These results could potentially provide novel insight into the correction mechanism of CFTR potentiator and also help
to develop new treatment for LQT2.
|
Page generated in 0.051 seconds